首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   196篇
  免费   19篇
  国内免费   3篇
  2023年   1篇
  2022年   2篇
  2021年   3篇
  2019年   1篇
  2018年   1篇
  2017年   4篇
  2016年   3篇
  2015年   5篇
  2014年   5篇
  2013年   12篇
  2012年   8篇
  2011年   10篇
  2010年   10篇
  2009年   6篇
  2008年   8篇
  2007年   6篇
  2006年   5篇
  2005年   6篇
  2004年   1篇
  2003年   7篇
  2002年   8篇
  2001年   12篇
  2000年   6篇
  1999年   9篇
  1998年   4篇
  1997年   12篇
  1996年   5篇
  1995年   3篇
  1994年   3篇
  1993年   6篇
  1992年   6篇
  1991年   5篇
  1990年   2篇
  1989年   5篇
  1988年   7篇
  1987年   5篇
  1986年   3篇
  1985年   3篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
  1980年   1篇
  1972年   1篇
  1967年   1篇
  1954年   1篇
排序方式: 共有218条查询结果,搜索用时 15 毫秒
21.
Cytosolic sialidase Neu2 has been implicated in myoblast differentiation. Here we observed a significant upregulation of Neu2 expression during differentiation of murine C2C12 myoblasts. This was evidenced both as an increase in Neu2 mRNA steady-state levels and in the cytosolic sialidase enzymatic activity. To understand the biological significance of Neu2 upregulation in myoblast differentiation, C2C12 cells were stably transfected with the rat cytosolic sialidase Neu2 cDNA. Neu2 overexpressing clones were characterized by a marked decrement of cell proliferation and by the capacity to undergo spontaneous myoblast differentiation also when maintained under standard growth conditions. This was evidenced by the formation of myogenin-positive myotubes and by a significant decrease in the nuclear levels of cyclin D1 protein. No differentiation was on the contrary observed in parental and mock-transfected cells under the same experimental conditions. The results indicate that Neu2 upregulation per se is sufficient to trigger myoblast differentiation in C2C12 cells.  相似文献   
22.
We studied steps that make up the initial and steady-state phases of nitric oxide (NO) synthesis to understand how activity of bovine endothelial NO synthase (eNOS) is regulated. Stopped-flow analysis of NADPH-dependent flavin reduction showed the rate increased from 0. 13 to 86 s(-1) upon calmodulin binding, but this supported slow heme reduction in the presence of either Arg or N(omega)-hydroxy-l-arginine (0.005 and 0.014 s(-1), respectively, at 10 degrees C). O(2) binding to ferrous eNOS generated a transient ferrous dioxy species (Soret peak at 427 nm) whose formation and decay kinetics indicate it can participate in NO synthesis. The kinetics of heme-NO complex formation were characterized under anaerobic conditions and during the initial phase of NO synthesis. During catalysis heme-NO complex formation required buildup of relatively high solution NO concentrations (>50 nm), which were easily achieved with N(omega)-hydroxy-l-arginine but not with Arg as substrate. Heme-NO complex formation caused eNOS NADPH oxidation and citrulline synthesis to decrease 3-fold and the apparent K(m) for O(2) to increase 6-fold. Our main conclusions are: 1) The slow steady-state rate of NO synthesis by eNOS is primarily because of slow electron transfer from its reductase domain to the heme, rather than heme-NO complex formation or other aspects of catalysis. 2) eNOS forms relatively little heme-NO complex during NO synthesis from Arg, implying NO feedback inhibition has a minimal role. These properties distinguish eNOS from the other NOS isoforms and provide a foundation to better understand its role in physiology and pathology.  相似文献   
23.
24.
The chromosomal high mobility group box-1 (HMGB1) protein acts as a proinflammatory cytokine when released in the extracellular environment by necrotic and inflammatory cells. In the present study, we show that HMGB1 exerts proangiogenic effects by inducing MAPK ERK1/2 activation, cell proliferation, and chemotaxis in endothelial cells of different origin. Accordingly, HMGB1 stimulates membrane ruffling and repair of a mechanically wounded endothelial cell monolayer and causes endothelial cell sprouting in a three-dimensional fibrin gel. In keeping with its in vitro properties, HMGB1 stimulates neovascularization when applied in vivo on the top of the chicken embryo chorioallantoic membrane whose blood vessels express the HMGB1 receptor for advanced glycation end products (RAGE). Accordingly, RAGE blockade by neutralizing Abs inhibits HMGB1-induced neovascularization in vivo and endothelial cell proliferation and membrane ruffling in vitro. Taken together, the data identify HMGB1/RAGE interaction as a potent proangiogenic stimulus.  相似文献   
25.
Dimerization is essential for activity of human epidermal growth factor receptors (HER1/EGFR, HER2/ErbB2, HER3/ErbB3, and ErbB4) and mediates intracellular signaling events leading to cancer cell proliferation, survival, and resistance to therapy. HER2 is the preferred dimerization partner. Activation of HER signaling pathways may be blocked by inhibition of dimer formation using a monoclonal antibody (MAb) directed against the dimerization domain of HER2. The murine MAb 2C4 that specifically binds the HER2 dimerization domain was cloned as a chimeric antibody, humanized using a computer-generated model to guide framework substitutions, and variants were tested as Fabs. Pharmacokinetics and toxicology were evaluated in rodents and cynomolgus monkeys. Cloning the variable domains of MAb 2C4 into a vector containing human kappa and CH1 domains allowed construction of a mouse-human chimeric Fab. DNA sequencing of the chimeric clone permitted identification of CDR residues. The full-length IgG1 of variant F-10 was equivalent in binding to chimeric IgG1 and was designated pertuzumab (rhuMAb 2C4; Omnitarg). Pertuzumab pharmacokinetics was best described by a two-compartment model with a distribution phase of <1 day, terminal half-life of ~10 days, and volume of distribution of ~40 mL/kg that approximates serum volume. With the exception of diarrhea, pertuzumab was generally well tolerated in cynomolgus monkeys. Pertuzumab, a recombinant humanized IgG1 MAb, is the first of a new class of agents known as HER dimerization inhibitors. Inhibition of HER dimerization may be an effective anticancer strategy in tumors with either normal or elevated expression of HER2.  相似文献   
26.
27.
While long-term fixation and storage of specimens is common and useful for many research projects, it is particularly important for space flight investigations where samples may not be returned to Earth for several months (International Space Station) or years (manned mission to Mars). We examined two critical challenges of space flight experimentation: the effect of long-term fixation on the quality of mouse bone preservation and the preservation of antigens and enzymes for both histochemical and immunohistochemical analyses, and how the animal/sample processing affects the preservation. We show that long-term fixation minimally affects standard histological staining, but that enzyme histochemistry and immunolabeling are greatly compromised. Further, we demonstrate that whole animal preservation is not as suitable as whole leg or stripped leg preservation for long-term fixation and all histological analyses. Overall, we recommend whole leg processing for long-term storage of bone specimens in fixative prior to embedding in plastic for histological examination.  相似文献   
28.
A neutralizing anti-interleukin-(IL-)8 monoclonal antibody was humanized by grafting the complementary determining regions onto the human IgG framework. Subsequent alanine scanning mutagenesis and phage display enabled the production of an affinity matured antibody with a >100-fold improvement in IL-8 binding. Antibody fragments can be efficiently produced in Escherichia coli but have the limitation of rapid clearance rates in vivo. The Fab' fragment of the antibody was therefore modified with polyethylene glycol (PEG) in order to obtain a more desirable pharmacokinetic profile. PEG (5-40 kDa) was site-specifically conjugated to the Fab' via the single free cysteine residue in the hinge region. In vitro binding and bioassays showed little or no loss of activity. The pharmacokinetic profiles of the 20 kDa, 30 kDa, 40 kDa, and 40 kDa branched PEG-Fab' molecules were evaluated in rabbits. Relative to the native Fab', the clearance rates of the PEGylated molecules were decreased by 44-175-fold. In a rabbit ear model of ischemia/reperfusion injury, all PEGylated Fab' molecules were as efficacious in reducing oedema as the original monoclonal antibody. These studies demonstrate that it is possible to customize the pharmacokinetic properties of a Fab' while retaining its antigen binding activity.  相似文献   
29.
A heparin-binding Mr 25,000 immunoreactive bFGF-like protein (ir-bFGF) is recognized in adult rat liver extract by affinity-purified polyclonal anti-human placental bFGF antibodies. Hepatic levels of this protein increase 4-fold in regenerating rat liver during the first 48 h after partial hepatectomy. Also, they appear to be higher in embryonic than in newborn or in adult rat liver. Mr 25,000 ir-bFGF from regenerating rat liver, partially purified by heparin-affinity chromatography, induces plasminogen activator activity and cell proliferation in transformed fetal bovine aortic endothelial GM 7373 cells and competes with Mr 18,000 [125I]bFGF for the binding to high affinity bFGF receptors. The data indicate the presence in rat liver of a high molecular weight form of bFGF whose expression is modulated during embryonic development and liver regeneration.  相似文献   
30.
Indirect immunofluorescence using anti-human placental bFGF antibodies demonstrates the presence of bFGF-like reactivity in the cytoplasm and in the nucleus of adult bovine aortic endothelial cells and of normal and transformed fetal bovine aortic endothelial AG 7680 and GM 7372 cells. Biologically active immunoreactive Mr 18,000 bFGF can be isolated by heparin-Sepharose affinity chromatography from the extract of GM 7372 cell nuclei. Quantitation of bFGF content by biological and immunological methods indicates that 100,000 bFGF molecules per nucleus are present in GM 7372 cells, with nuclear bFGF corresponding to 25-30% of total cellular bFGF. Immunoprecipitation experiments demonstrate that the nuclear localization of newly synthesized bFGF occurs when GM 7372 cells are biosynthetically labeled both in the absence and in the presence of suramin, a molecule that inhibits the binding of bFGF to its plasma membrane receptor. Thus the data indicate that endogenous bFGF undergoes an intracellular sorting to the nucleus of the endothelial cell.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号