首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   73篇
  免费   4篇
  77篇
  2021年   2篇
  2019年   2篇
  2016年   1篇
  2015年   3篇
  2012年   2篇
  2011年   3篇
  2010年   6篇
  2009年   1篇
  2007年   3篇
  2006年   1篇
  2005年   5篇
  2004年   2篇
  2003年   1篇
  2002年   3篇
  2001年   3篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1993年   4篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1983年   5篇
  1982年   6篇
  1981年   1篇
  1973年   2篇
  1972年   2篇
  1969年   1篇
  1967年   1篇
排序方式: 共有77条查询结果,搜索用时 0 毫秒
61.
62.
Efforts to predict protein secondary structure have been hampered by the apparent structural plasticity of local amino acid sequences. Kabsch and Sander (1984, Proc. Natl. Acad. Sci. USA 81, 1075–1078) articulated this problem by demonstrating that identical pentapeptide sequences can adopt distinct structures in different proteins. With the increased size of the protein structure database and the availability of new methods to characterize structural environments, we revisit this observation of structural plasticity. Within a set of proteins with less than 50% sequence identity, 59 pairs of identical hexapeptide sequences were identified. These local structures were compared and their surrounding structural environments examined. Within a protein structural class (α/α, β/β, α/β, α + β), the structural similarity of sequentially identical hexapeptides usually is preserved. This study finds eight pairs of identical hexapeptide sequences that adopt β-strand structure in one protein and α-helical structure in the other. In none of the eight cases do the members of these sequence pairs come from proteins within the same folding class. These results have implications for class dependent secondary structure prediction algorithms.  相似文献   
63.
64.
NK cells are essential for health, yet little is known about human NK turnover in vivo. In both young and elderly women, all NK subsets proliferated and died more rapidly than T cells. CD56(bright) NK cells proliferated rapidly but died relatively slowly, suggesting that proliferating CD56(bright) cells differentiate into CD56(dim) NK cells in vivo. The relationship between CD56(dim) and CD56(bright) proliferating cells indicates that proliferating CD56(dim) cells both self-renew and are derived from proliferating CD56(bright) NK cells. Our data suggest that some dying CD56(dim) cells become CD16(+)CD56(-) NK cells and that CD16(-)CD56(low) NK cells respond rapidly to cellular and cytokine stimulation. We propose a model in which all NK cell subsets are in dynamic flux. About half of CD56(dim) NK cells expressed CD57, which was weakly associated with low proliferation. Surprisingly, CD57 expression was associated with higher proliferation rates in both CD8(+) and CD8(-) T cells. Therefore, CD57 is not a reliable marker of senescent, nonproliferative T cells in vivo. NKG2A expression declined with age on both NK cells and T cells. Killer cell Ig-like receptor expression increased with age on T cells but not on NK cells. Although the percentage of CD56(bright) NK cells declined with age and the percentage of CD56(dim) NK cells increased with age, there were no significant age-related proliferation or apoptosis differences for these two populations or for total NK cells. In vivo human NK cell turnover is rapid in both young and elderly adults.  相似文献   
65.
66.
67.
68.
69.
The vitamin that is most commonly deficient in the American diet is folate. Severe folate deficiency in humans is known to cause megaloblastic anemia and developmental defects, and is associated with an increased incidence of several forms of human cancer. Although the exact mechanisms by which this vitamin deficiency may cause these diseases are not known at the present time, recent work has shown that folate deficiency also causes genomic instability and programmed cell death (or apoptosis). Additionally, it is known that the DNA mismatch repair pathway mediates folate deficiency-induced apoptosis. This review will first describe work suggesting that folate deficiency causes genomic instability and apoptosis, then discuss possible mechanisms by which the mismatch repair pathway could trigger folate deficiency-induced apoptosis, which has either protective or destructive effects on tissue.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号