首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   73篇
  免费   4篇
  77篇
  2021年   2篇
  2019年   2篇
  2016年   1篇
  2015年   3篇
  2012年   2篇
  2011年   3篇
  2010年   6篇
  2009年   1篇
  2007年   3篇
  2006年   1篇
  2005年   5篇
  2004年   2篇
  2003年   1篇
  2002年   3篇
  2001年   3篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1993年   4篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1983年   5篇
  1982年   6篇
  1981年   1篇
  1973年   2篇
  1972年   2篇
  1969年   1篇
  1967年   1篇
排序方式: 共有77条查询结果,搜索用时 15 毫秒
21.
Reconstitution of 5'-directed human mismatch repair in a purified system   总被引:6,自引:0,他引:6  
Zhang Y  Yuan F  Presnell SR  Tian K  Gao Y  Tomkinson AE  Gu L  Li GM 《Cell》2005,122(5):693-705
This paper reports reconstitution of 5'-nick-directed mismatch repair using purified human proteins. The reconstituted system includes MutSalpha or MutSbeta, MutLalpha, RPA, EXO1, HMGB1, PCNA, RFC, polymerase delta, and ligase I. In this system, MutSbeta plays a limited role in repair of base-base mismatches, but it processes insertion/deletion mispairs much more efficiently than MutSalpha, which efficiently corrects both types of heteroduplexes. MutLalpha reduces the processivity of EXO1 and terminates EXO1-catalyzed excision upon mismatch removal. In the absence of MutLalpha, mismatch-provoked excision by EXO1 occurs extensively. RPA and HMGB1 play similar but complementary roles in stimulating MutSalpha-activated, EXO1-catalyzed excision in the presence of a mismatch, but RPA has a distinct role in facilitating MutLalpha-mediated excision termination past mismatch. Evidence is provided that efficient repair of a single mismatch requires multiple molecules of MutSalpha-MutLalpha complex. These data suggest a model for human mismatch repair involving coordinated initiation and termination of mismatch-provoked excision.  相似文献   
22.

Background  

Uncovering the molecular mechanism underlying expansion of hematopoietic stem and progenitor cells is critical to extend current therapeutic applications and to understand how its deregulation relates to leukemia. The characterization of genes commonly relevant to stem/progenitor cell expansion and tumor development should facilitate the identification of novel therapeutic targets in cancer.  相似文献   
23.
24.
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an arrhythmogenic disease that manifests as syncope or sudden death during high adrenergic tone in the absence of structural heart defects. It is primarily caused by mutations in the cardiac ryanodine receptor (RyR2). The mechanism by which these mutations cause arrhythmia remains controversial, with discrepant findings related to the role of the RyR2 binding protein FKBP12.6. The purpose of this study was to characterize a novel RyR2 mutation identified in a kindred with clinically diagnosed CPVT.Single-strand conformational polymorphism analysis and direct DNA sequencing were used to screen the RyR2 gene for mutations. Site-directed mutagenesis was employed to introduce the mutation into the mouse RyR2 cDNA. The impact of the mutation on the interaction between RyR2 and a 12.6 kDa FK506 binding protein (FKBP12.6) was determined by immunoprecipitation and immunoblotting and its effect on RyR2 function was characterized by single cell Ca2+ imaging and [3H]ryanodine binding.A novel CPVT mutation, E189D, was identified. The E189D mutation does not alter the affinity of the channel for FKBP12.6, but it increases the propensity for store-overload-induced Ca2+ release (SOICR). Furthermore, the E189D mutation enhances the basal channel activity of RyR2 and its sensitivity to activation by caffeine.The E189D RyR2 mutation is causative for CPVT and functionally increases the propensity for SOICR without altering the affinity for FKBP12.6. These observations strengthen the notion that enhanced SOICR, but not altered FKBP12.6 binding, is a common mechanism by which RyR2 mutations cause arrhythmias.Key words: arrhythmia, calcium, death sudden, genetics, ion channels  相似文献   
25.
26.
Endothelial cells release nitric oxide (NO) acutely in response to increased laminar fluid shear stress, and the increase is correlated with enhanced phosphorylation of endothelial nitric-oxide synthase (eNOS). Phosphoamino acid analysis of eNOS from bovine aortic endothelial cells labeled with [(32)P]orthophosphate demonstrated that only phosphoserine was present in eNOS under both static and flow conditions. Fluid shear stress induced phosphate incorporation into two specific eNOS tryptic peptides as early as 30 s after initiation of flow. The flow-induced tryptic phosphopeptides were enriched, separated by capillary electrophoresis with intermittent voltage drops, also known as "peak parking," and analyzed by collision-induced dissociation in a tandem mass spectrometer. Two phosphopeptide sequences determined by tandem mass spectrometry, TQpSFSLQER and KLQTRPpSPGPPPAEQLLSQAR, were confirmed as the two flow-dependent phosphopeptides by co-migration with synthetic phosphopeptides. Because the sequence (RIR)TQpSFSLQER contains a consensus substrate site for protein kinase B (PKB or Akt), we demonstrated that LY294002, an inhibitor of the upstream activator of PKB, phosphatidylinositol 3-kinase, inhibited flow-induced eNOS phosphorylation by 97% and NO production by 68%. Finally, PKB phosphorylated eNOS in vitro at the same site phosphorylated in the cell and increased eNOS enzymatic activity by 15-20-fold.  相似文献   
27.
Proliferating cell nuclear antigen (PCNA) is involved in mammalian mismatch repair at a step prior to or at mismatch excision, but the molecular mechanism of this process is not fully understood. To examine the role of PCNA in mismatch-provoked and nick-directed excision, orientation-specific mismatch removal of heteroduplexes with a pre-existing nick was monitored in human nuclear extracts supplemented with the PCNA inhibitor protein p21. We show here that, whereas 3' nick-directed mismatch excision was completely inhibited by low concentrations of p21 or a p21 C-terminal fusion protein, 5' nick-directed excision was only partially blocked under the same conditions. No further reduction of the 5' excision was detected when a much higher concentration of p21 C-terminal protein was used. These results suggest the following. (i) There is a differential requirement for PCNA in 3' and 5' nick-directed excision; and (ii) 5' nick-directed excision is conducted by a manner either dependent on or independent of PCNA. Our in vitro reconstitution experiments indeed identified a 5' nick-directed excision pathway that is dependent on PCNA, hMutSalpha, and a partially purified fraction from a HeLa nuclear extract.  相似文献   
28.
The vitamin K-dependent gamma-glutamyl carboxylase binds an 18-amino acid sequence usually attached as a propeptide to its substrates. Price and Williamson (Protein Sci. (1993) 2, 1997-1998) noticed that residues 495-513 of the carboxylase shares similarity with the propeptide. They suggested that this internal propeptide could bind intramolecularly to the propeptide binding site of carboxylase, thereby preventing carboxylation of substrates lacking a propeptide recognition sequence. To test Price's hypothesis, we created nine mutant enzyme species that have single or double mutations within this putative internal propeptide. The apparent K(d) values of these mutant enzymes for human factor IX propeptide varied from 0.5- to 287-fold when compared with that of wild type enzyme. These results are consistent with the internal propeptide hypothesis but could also be explained by these residues participating in propeptide binding site per se. To distinguish between the two alternative hypotheses, we measured the dissociation rates of propeptides from each of the mutant enzymes. Changes in an internal propeptide should not affect the dissociation rates, but changes to a propeptide binding site may affect the dissociation rate. We found that dissociation rates varied in a manner consistent with the apparent K(d) values measured above. Furthermore, kinetic studies using propeptide-containing substrates demonstrated a correlation between the affinity for propeptide and V(max). Taken together, our results indicated that these mutations affected the propeptide binding site rather than a competitive inhibitory internal propeptide sequence. These results agree with our previous observations, indicating that residues in this region are involved in propeptide binding.  相似文献   
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号