首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   103篇
  免费   19篇
  122篇
  2021年   3篇
  2019年   2篇
  2018年   3篇
  2017年   3篇
  2016年   2篇
  2015年   6篇
  2014年   5篇
  2013年   2篇
  2012年   3篇
  2011年   6篇
  2010年   5篇
  2009年   4篇
  2008年   11篇
  2007年   3篇
  2006年   6篇
  2005年   7篇
  2004年   1篇
  2003年   1篇
  2002年   3篇
  2001年   3篇
  2000年   3篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1992年   4篇
  1991年   4篇
  1989年   1篇
  1988年   1篇
  1985年   1篇
  1982年   3篇
  1979年   2篇
  1977年   2篇
  1976年   2篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
  1948年   1篇
  1940年   1篇
  1931年   2篇
排序方式: 共有122条查询结果,搜索用时 15 毫秒
71.
Summary In the rat superior cervical and coeliac-mesenteric ganglia we have observed three types of small granulated (SG) cell: Type I cells are characterised by membrane-bounded cytoplasmic granules with a core of variable, moderate to low electron-density, whose limiting membranes are rounded in profile ranging from 50–150 nm in diameter. Type II SG cells contain numerous highly electron-dense, polymorphic cytoplasmic granules ranging from 100–300 nm in diameter. The haloes of Type II cell granules are variable in shape, and the core is often eccentrically located or fragmented. Type III SG cells contain membrane-bounded granules with a core of variable moderate to low electron-density. In profile these granules appear oblong or circular with average dimensions of 170 × 50 nm. All three SG cell types receive cholinergic-type pre-ganglionic terminals whose afferent nature is confirmed by their degeneration following pre-ganglionic neurectomy. Only Type I cells have been observed to donate efferent synapses to dendrites of principal ganglionic neurones and are thus interneuronal.This work was in part supported by a grant from the Medical Research Council. We wish to thank Mr. T.T. Lee for valuable technical assistance and Mr. P.F. Hire and Mr. K. Twohigg for illustrative help  相似文献   
72.
Soluble guanylate cyclase (sGC) is a nitric oxide- (NO-) sensing hemoprotein that has been found in eukaryotes from Drosophila to humans. Prokaryotic proteins with significant homology to the heme domain of sGC have recently been identified through genomic analysis. Characterization of two of these proteins is reported here. The first is a 181 amino acid protein cloned from Vibrio cholerae (VCA0720) that is encoded in a histidine kinase-containing operon. The ferrous unligated form of VCA0720 is 5-coordinate, high-spin. The CO complex is low-spin, 6-coordinate, and the NO complex is high-spin and 5-coordinate. These ligand-binding properties are very similar to those of sGC. The second protein is the N-terminal 188 amino acids of Tar4 (TtTar4H), a predicted methyl-accepting chemotaxis protein (MCP) from the strict anaerobe Thermoanaerobacter tengcongensis. TtTar4H forms a low-spin, 6-coordinate ferrous-oxy complex, the first of this sGC-related family that binds O2. TtTar4H has ligand-binding properties similar to those of the heme-containing O2 sensors such as AxPDEA1. sGC does not bind O2 despite having a porphyrin with a histidyl ligand like the globins. The results reported here, with sequence-related proteins from prokaryotes but in the same family as the sGC heme domain, show that these proteins have evolved to discriminate between ligands such as NO and O2; hence, we term this family H-NOX domains (heme-nitric oxide/oxygen).  相似文献   
73.
74.
Abundant and Diverse Fungal Microbiota in the Murine Intestine   总被引:4,自引:0,他引:4       下载免费PDF全文
Enteric microbiota play a variety of roles in intestinal health and disease. While bacteria in the intestine have been broadly characterized, little is known about the abundance or diversity of enteric fungi. This study utilized a culture-independent method termed oligonucleotide fingerprinting of rRNA genes (OFRG) to describe the compositions of fungal and bacterial rRNA genes from small and large intestines (tissue and luminal contents) of restricted-flora and specific-pathogen-free mice. OFRG analysis identified rRNA genes from all four major fungal phyla: Ascomycota, Basidiomycota, Chytridiomycota, and Zygomycota. The largest assemblages of fungal rRNA sequences were related to the genera Acremonium, Monilinia, Fusarium, Cryptococcus/Filobasidium, Scleroderma, Catenomyces, Spizellomyces, Neocallimastix, Powellomyces, Entophlyctis, Mortierella, and Smittium and the order Mucorales. The majority of bacterial rRNA gene clones were affiliated with the taxa Bacteroidetes, Firmicutes, Acinetobacter, and Lactobacillus. Sequence-selective PCR analyses also detected several of these bacterial and fungal rRNA genes in the mouse chow. Fluorescence in situ hybridization analysis with a fungal small-subunit rRNA probe revealed morphologically diverse microorganisms resident in the mucus biofilm adjacent to the cecal and proximal colonic epithelium. Hybridizing organisms comprised about 2% of the DAPI (4′,6-diamidino-2-phenylindole, dihydrochloride)-positive organisms in the mucus biofilm, but their abundance in fecal material may be much lower. These data indicate that diverse fungal taxa are present in the intestinal microbial community. Their abundance suggests that they may play significant roles in enteric microbial functions.  相似文献   
75.
76.
Aim We evaluated the structure of metacommunities for each of three vertebrate orders (Chiroptera, Rodentia and Passeriformes) along an extensive elevational gradient. Using elevation as a proxy for variation in abiotic characteristics and the known elevational distributions of habitat types, we assessed the extent to which variation in those factors may structure each metacommunity based on taxon‐specific characteristics. Location Manu Biosphere Reserve in the Peruvian Andes. Methods Metacommunity structure is an emergent property of a set of species distributions across geographic or environmental gradients. We analysed elements of metacommunity structure (coherence, range turnover and range boundary clumping) to determine the best‐fit structure for each metacommunity along an elevational gradient comprising 13 250‐m elevational intervals and 58 species of rodent, 92 species of bat or 586 species of passerine. Results For each taxon, the environmental gradient along which the metacommunity was structured was highly correlated with elevation. Clementsian structure (i.e. groups of species replacing other such groups along the gradient) characterized rodents, with a group of species that was characteristic of rain forests and a group of species that was characteristic of higher elevation habitats (i.e. above 1500 m). Distributions of bats were strongly nested, with more montane communities comprising subsets of species at lower elevations. The structure of the passerine metacommunity was complex and most consistent with a quasi‐Clementsian structure. Main conclusions Each metacommunity exhibited a different structure along the same elevational gradient, and each structure can be accounted for by taxon‐specific responses to local environmental factors that vary predictably with elevation. The structures of rodent and bird metacommunities suggest species sorting associated with habitat specializations, whereas structure of the bat metacommunity is probably moulded by a combination of species‐specific tolerances to increasingly cold, low‐productivity environs of higher elevations and the diversity and abundance of food resources associated with particular habitat types.  相似文献   
77.
Crop residue removal can affect the susceptibility to soil wind erosion in climates such as those of the Central Great Plains, United States. Six on‐farm trials were conducted in Kansas from 2011 to 2013 to determine the effects of winter wheat (Triticum aestivum L.), corn (Zea mays L.), and grain sorghum (Sorghum bicolor (L.) Moench), residue removal at 0, 25, 50, 75, and 100% of initial height on soil wind erosion parameters. Those parameters include soil surface random roughness (RR), and wind erodible fraction (EF; aggregates <0.84 mm), geometric mean diameter (GMD) and geometric standard deviation (GSD), stability of dry aggregates (DAS). Complete (100%) residue removal decreased the surface RR, increased EF, and decreased GMD. Overwinter EF values increased for five of six sites from fall 2011 to spring of 2012, particularly for the uppermost removal height (≥75%). Measured EF, GMD, GSD, DAS, and RR were also input into the Single‐event Wind Erosion Evaluation Program (SWEEP) to determine the effect of these parameters on simulated soil loss. The SWEEP simulated the wind velocity needed to initiate wind erosion as well as soil loss under each residue removal height at a wind velocity of 13 m s?1 for three hours. Threshold wind velocity required to initiate wind erosion generally decreased with increasing crop residue removal height, particularly for >75% removal. Total estimated soil loss over the three‐hour event ranged from ≈2 to 25 Mg ha?1, depending on EF, GMD, GSD, RR, and percent crop residue cover. Removing 75% residue increased simulated wind erosion at three of six sites while removing 50% appears sustainable at all six study sites. Findings reinforce the need for site‐by‐site consideration of the potential amount of crop residue that may be harvested while mitigating wind erosion. Study results indicate the value of maintaining residue at >75% of original height.  相似文献   
78.
Activities of the glyoxylate cycle enzymes isocitrate lyase (EC 4.1.3.1) and malate synthase (EC 4.1.3.2) were assayed in extracts prepared at different stages of myxospore formation in liquid cultures of Myxococcus xanthus. Activities of both enzymes attained peak values during conversion of rods to spheres. Isocitrate lyase activity decreased after reaching its peak value. Malate synthase activity also declined but at a much slower rate. The loss of isocitrate lyase activity could be prevented by the addition of chloramphenicol to cultures early in myxospore formation (during the initial rise in enzyme activity), but not by such addition at later stages of myxospore formation. The increase in glyoxylate cycle enzymes was not observed in a mutant unable to form myxospores in liquid culture under conditions suitable for morphological conversion of the wild type, or in wild-type cells incubated in the absence of an inducer for myxospore formation. It is concluded that the changes in the glyoxylate cycle enzymes represent regulatory phenomena associated with the development of the myxospore.  相似文献   
79.
We examined the relative contributions of regional spatial characteristics and local environmental conditions in determining Paraguayan bat species composition. We used a suite of full and partial redundancy analyses to estimate four additive partitions of variance in bat species composition: (a) unexplained variation, (b) that explained purely by spatial characteristics, (c) that explained purely by local environmental conditions and (d) that explained jointly by space and environment. The spatial component to bat species composition was greater than the environmental component and both pure spatial and pure environmental characteristics accounted for significant amounts of variation in bat species composition. Results from variance decomposition suggest that the mass effects model describes metacommunity structure of Paraguayan bats better than species sorting or neutral models. Such mass effects may potentially be general for bats and could explain the inability of purely local factors to fully account for bat community organization. Mass effects also have substantial conservation implications because rescue effects may enhance the persistence of mobile species in fragmented landscapes with relatively few protected sites.  相似文献   
80.
Steven J. Presley 《Oikos》2011,120(6):832-841
Patterns of aggregation of species or individuals may result from combinations of interspecific interactions such as competition, facilitation, or apparent facilitation, as well as from equivalent responses to environmental factors. Host–parasite systems are ideal for the investigation of mechanisms that structure assemblages. Interspecific aggregation is documented for multiple groups that are ectoparasitic on mammals and host‐mediated apparent facilitation has been suggested to explain these aggregation patterns. To investigate the generality of this pattern and to determine likely structuring mechanisms, I analyzed species co‐occurrence, correlations of abundances, and nestedness for ectoparasite assemblages from each of 11 species of Neotropical bat. Ectoparasite assemblages on four of 11 host species exhibited significant positive co‐occurrence for the entire assemblage or for at least one pair of species in the assemblage; ectoparasites on two host species exhibited positive co‐occurrence that approached significance. There was no evidence of negative co‐occurrence. Nine species‐pairs exhibited positive abundance correlations, including seven of the eight species‐pairs that exhibited positive co‐occurrence. No species‐pair exhibited a negative correlation of abundances (i.e. density compensation). Ectoparasite assemblages from five of 11 host species exhibited nestedness, including all three assemblages that exhibited assemblage‐wide positive co‐occurrence. Multiple mechanisms associated with host characteristics may contribute to host aggregation in ectoparasite assemblages, including host body size, vagility, home range size, burrow or roost size and complexity, immunocompetence and social structure. In general, data in this study and elsewhere are not consistent with interspecific interactions among ectoparasites, including apparent facilitation, being primary structuring mechanisms of ectoparasite assemblages on mammalian hosts. Rather, host behavior and ecology are likely to affect the frequency of host–ectoparasite encounters and of conspecific host interactions that facilitate transfer of ectoparasites, thereby, molding patterns of ectoparasite co‐occurrence, abundance and species composition on mammalian hosts. Combinations of characteristics that are primarily responsible for molding ectoparasite assemblage composition likely are host‐taxon specific.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号