首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   123篇
  免费   9篇
  132篇
  2021年   1篇
  2020年   3篇
  2019年   2篇
  2017年   2篇
  2016年   3篇
  2015年   10篇
  2014年   7篇
  2013年   14篇
  2012年   10篇
  2011年   2篇
  2010年   3篇
  2009年   1篇
  2008年   4篇
  2007年   7篇
  2006年   2篇
  2005年   2篇
  2004年   5篇
  2003年   1篇
  2002年   3篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1997年   2篇
  1996年   1篇
  1994年   1篇
  1992年   1篇
  1990年   1篇
  1989年   3篇
  1988年   1篇
  1986年   2篇
  1985年   3篇
  1984年   5篇
  1983年   2篇
  1982年   5篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1977年   4篇
  1976年   2篇
  1974年   2篇
  1973年   2篇
  1970年   1篇
  1964年   1篇
排序方式: 共有132条查询结果,搜索用时 15 毫秒
11.
Activation of human B cells by pokeweed mitogen (PWM), protein A, anti-IgM, or EBV infection results in the expression of a new surface antigen, termed BLAST-2 [EBVCS]. This marker appears before the cells undergo blast transformation as assessed by the initiation of DNA synthesis and expression of the BLAST-1 antigen. Thus, the BLAST-2 [EBVCS] antigen is expressed on both activated and lymphoblastoid cells. The antigen is, in addition, restricted to B cells, as it is not found on cells of T or myeloid lineage derived from peripheral blood, cell lines, or neoplastic cells. However, it is readily detected on chronic lymphocytic leukemia cells of B cell origin and in the germinal centers of tonsils and lymph nodes. Like the BLAST-1 antigen, BLAST-2 [EBVCS] is expressed at a high level only on EBV-transformed B lymphoblasts and has a m.w. close to 45,000. Immunoprecipitation experiments show, however, that the two antigens are expressed on distinct populations of molecules.  相似文献   
12.
Acute experimental allergic encephalomyelitis (EAE) is a T cell-mediated, neurologic disease that is under immunogenetic control. We systematically analyzed the quantity and distribution of T cells, B cells, and macrophages in the central nervous system (CNS) of susceptible and resistant guinea (GP) with a panel of seven monoclonal antibodies by using the avidin-biotin complex (ABC) immunoperoxidase technique and alpha-naphthyl-butyrate esterase (ANBE) staining. Adult EAE-susceptible strain 13 GP immunized with isogeneic spinal cord homogenate (SC) or with myelin basic protein (MBP) developed clinical signs (paralysis, weight loss, etc.) in 2 to 3 wk. T cells were present in all CNS inflammatory foci and comprised 44% of the perivascular mononuclear cells. T cells diffusely infiltrated the neuropil away from inflammatory cell aggregates. These T cells were judged to be extravascular by the lack of an associated identifiable vessel in counter-stained sections, and by their persistence following exhaustive perfusion of the brains. In routine sections, mononuclear cells could be detected only in perivascular aggregates. IgM+ B cells comprised 9% of the perivascular infiltrates and did not diffusely infiltrate the parenchyma. ANBE+ macrophages comprised the remaining 47% of the identified perivascular cells. SC- and MBP-immunized GP showed equivalent numbers of inflammatory foci, T cells, and macrophages, but SC-immunized GP had more IgM+ cells in the meninges and choroid plexus (p less than 0.001, p less than 0.02, respectively). Virtually all cells in perivascular locations were Ia+. Ia+ mononuclear cells were also present in the neuropil. EAE-resistant strain 2 GP immunized with SC developed no clinical signs. These GP had fewer perivascular foci than strain 13 GP but, when present, the cellular composition, including the density of diffuse parenchymal T cell infiltrates, was indistinguishable. Significantly fewer parenchymal mononuclear cells in the strain 2 GP, however, displayed Ia, both in perivascular and diffuse infiltrates (p less than 0.001). We conclude that T cell migration into the CNS parenchyma is a characteristic feature of acute EAE in the GP, but that T cells can occur in this pattern without clinical signs of disease. The two features that distinguish susceptible and resistant strains were the frequency of perivascular infiltrates and the expression of Ia on parenchymal mononuclear cells, which probably reflects their enhanced immunologic activation in situ.  相似文献   
13.

Introduction

Post influenza pneumonia is a leading cause of mortality and morbidity, with mortality rates approaching 60% when bacterial infections are secondary to multi-drug resistant (MDR) pathogens. Staphylococcus aureus, in particular community acquired MRSA (cMRSA), has emerged as a leading cause of post influenza pneumonia.

Hypothesis

Linezolid (LZD) prevents acute lung injury in murine model of post influenza bacterial pneumonia

Methods

Mice were infected with HINI strain of influenza and then challenged with cMRSA at day 7, treated with antibiotics (LZD or Vanco) or vehicle 6 hours post bacterial challenge and lungs and bronchoalveolar lavage fluid (BAL) harvested at 24 hours for bacterial clearance, inflammatory cell influx, cytokine/chemokine analysis and assessment of lung injury.

Results

Mice treated with LZD or Vanco had lower bacterial burden in the lung and no systemic dissemination, as compared to the control (no antibiotic) group at 24 hours post bacterial challenge. As compared to animals receiving Vanco, LZD group had significantly lower numbers of neutrophils in the BAL (9×103 vs. 2.3×104, p < 0.01), which was associated with reduced levels of chemotactic chemokines and inflammatory cytokines KC, MIP-2, IFN-γ, TNF-α and IL-1β in the BAL. Interestingly, LZD treatment also protected mice from lung injury, as assessed by albumin concentration in the BAL post treatment with H1N1 and cMRSA when compared to vanco treatment. Moreover, treatment with LZD was associated with significantly lower levels of PVL toxin in lungs.

Conclusion

Linezolid has unique immunomodulatory effects on host inflammatory response and lung injury in a murine model of post-viral cMRSA pneumonia.  相似文献   
14.
15.
16.
17.
18.
A case for regulatory B cells   总被引:11,自引:0,他引:11  
B cells are typically characterized by their ability to produce Abs, including autoantibodies. However, B cells possess additional immune functions, including the production of cytokines and the ability to function as a secondary APC. As with T cells, the B cell population contains functionally distinct subsets capable of performing both pathogenic and regulatory functions. Recent studies indicate that regulatory B cells develop in several murine models of chronic inflammation, including inflammatory bowel disease, rheumatoid arthritis, and experimental autoimmune encephalomyelitis. The regulatory function may be directly accomplished by the production of regulatory cytokines IL-10 and TGF-beta and/or by the ability of B cells to interact with pathogenic T cells to dampen harmful immune responses. In this review, we make a case for the existence of regulatory B cells and discuss the possible developmental pathways and functional mechanisms of these B cells.  相似文献   
19.
We investigated mechanisms by which TLR9 signaling promoted the development of the protective response to Cryptococcus neoformans in mice with cryptococcal pneumonia. The afferent (week 1) and efferent (week 3) phase immune parameters were analyzed in the infected wild-type (TLR9(+/+)) and TLR-deficient (TLR9(-/-)) mice. TLR9 deletion diminished 1) accumulation and activation of CD11b(+) dendritic cells (DCs), 2) the induction of IFN-γ and CCR2 chemokines CCL7, CCL12, but not CCL2, at week 1, and 3) pulmonary accumulation and activation of the major effector cells CD4(+) and CD8(+) T cells, CD11b(+) lung DCs, and exudate macrophages at week 3. The significance of CCL7 induction downstream of TLR9 signaling was investigated by determining whether CCL7 reconstitution would improve immunological parameters in C. neoformans-infected TLR9(-/-) mice. Early reconstitution with CCL7 1) improved accumulation and activation of CD11b(+) DCs at week 1, 2) restored early IFN-γ production in the lungs, and 3) restored the accumulation of major effector cell subsets. CCL7 administration abolished the difference in lung fungal burdens between TLR9(+/+) and TLR9(-/-) mice at week 3; however, significant reduction of fungal burdens between PBS- and CCL7-treated mice has not been observed, suggesting that additional mechanism(s) apart from early CCL7 induction contribute to optimal fungal clearance in TLR9(+/+) mice. Collectively, we show that TLR9 signaling during the afferent phase contributes to the development of protective immunity by promoting the early induction of CCL7 and IFN-γ and the subsequent early recruitment and activation of DCs and additional effector cells in mice with cryptococcal pneumonia.  相似文献   
20.
A duplication growth model of gene expression networks   总被引:8,自引:0,他引:8  
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号