首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   4篇
  35篇
  2021年   2篇
  2017年   2篇
  2016年   3篇
  2015年   2篇
  2014年   2篇
  2013年   2篇
  2012年   2篇
  2011年   3篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2007年   2篇
  2006年   3篇
  2005年   2篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
  1998年   1篇
  1983年   1篇
排序方式: 共有35条查询结果,搜索用时 15 毫秒
31.
Estimates of tag retention and tagging-related mortality are essential for mark-recapture experiments. Mortality and tag loss were estimated from 15 tigerfish Hydrocynus vittatus marked using Hallmark model PDL plastic-tipped dart tags released into a 1 730 m2 pond at Kamutjonga Inland Fisheries Institute, Namibia, and inspected bi-monthly for the presence or absence of tags. No mortality was observed during the experiment. All marked fish had lost their tags after 10 months and 50% tag loss was estimated at 3.9 months. The high tag loss rate indicates that PDL plastic-tipped dart tags are not suitable for long-term studies on this species.  相似文献   
32.
Quantitative microbial risk assessment models for estimating the annual risk of enteric virus infection associated with consuming raw vegetables that have been overhead irrigated with nondisinfected secondary treated reclaimed water were constructed. We ran models for several different scenarios of crop type, viral concentration in effluent, and time since last irrigation event. The mean annual risk of infection was always less for cucumber than for broccoli, cabbage, or lettuce. Across the various crops, effluent qualities, and viral decay rates considered, the annual risk of infection ranged from 10−3 to 10−1 when reclaimed-water irrigation ceased 1 day before harvest and from 10−9 to 10−3 when it ceased 2 weeks before harvest. Two previously published decay coefficients were used to describe the die-off of viruses in the environment. For all combinations of crop type and effluent quality, application of the more aggressive decay coefficient led to annual risks of infection that satisfied the commonly propounded benchmark of ≤10−4, i.e., one infection or less per 10,000 people per year, providing that 14 days had elapsed since irrigation with reclaimed water. Conversely, this benchmark was not attained for any combination of crop and water quality when this withholding period was 1 day. The lower decay rate conferred markedly less protection, with broccoli and cucumber being the only crops satisfying the 10−4 standard for all water qualities after a 14-day withholding period. Sensitivity analyses on the models revealed that in nearly all cases, variation in the amount of produce consumed had the most significant effect on the total uncertainty surrounding the estimate of annual infection risk. The models presented cover what would generally be considered to be worst-case scenarios: overhead irrigation and consumption of vegetables raw. Practices such as subsurface, furrow, or drip irrigation and postharvest washing/disinfection and food preparation could substantially lower risks and need to be considered in future models, particularly for developed nations where these extra risk reduction measures are more common.  相似文献   
33.
This study examined the feasibility of producing hydrogen by direct fermentation of fodder maize, chicory fructooligosaccharides and perennial ryegrass (Lolium perenne) in batch culture (pH 5.2-5.3, 35 degrees C, heat-treated anaerobically digested sludge inoculum). Gas was produced from each substrate and contained up to 50-80% hydrogen during the peak periods of gas production with the remainder carbon dioxide. Hydrogen yields obtained were 62.4+/-6.1mL/g dry matter added for fodder maize, 218+/-28mL/g chicory fructooligosaccharides added, 75.6+/-8.8mL H(2)/g dry matter added for wilted perennial ryegrass and 21.8+/-8mL H(2)/g dry matter added for fresh perennial ryegrass. Butyrate, acetate and ethanol were the main soluble fermentation products. Hydrogen yields of 392-501m(3)/hectare of perennial ryegrass per year and 1060-1309m(3)/hectare of fodder maize per year can be obtained based on the UK annual yield per hectare of these crops. These results significantly extend the range of substrates that can be used for hydrogen production without pre-treatment.  相似文献   
34.
The control of cell cycle progression has been studied in asynchronous cultures using image analysis and time lapse techniques. This approach allows determination of the cycle phase and signaling properties of individual cells, and avoids the need for synchronization. In past studies this approach demonstrated that continuous cell cycle progression requires the induction of cyclin D1 levels by Ras, and that this induction takes place during G2 phase. These studies were designed to understand how Ras could induce cyclin D1 levels only during G2 phase. First, in studies with a Ras-specific promoter and cellular migration we find that endogenous Ras is active in all cell cycle phases of actively cycling NIH3T3 cells. This suggests that cyclin D1 induction during G2 phase is not the result of Ras activation specifically during this cell cycle period. To confirm this suggestion oncogenic Ras, which is expected to be active in all cell cycle phases, was microinjected into asynchronous cells. The injected protein induced cyclin D1 levels rapidly, but only in G2 phase cells. We conclude that in the continuously cycling cell the targets of Ras activity are controlled by cell cycle phase, and that this phenomenon is vital to cell cycle progression.  相似文献   
35.
A fast and cost effective immobilization of electron carriers, methylene blue (MB) and neutral red (NR) by pH shift was proposed to improve bioanodic performance. The adsorption of mediators onto the carbon cloth anode was verified using cyclic voltammogram (CV) and the effect of the immobilized mediators on acclimation, power density, and acetate removal of MFCs was investigated. A peak power density of P max(MB) = 11.3 W/m3 was achieved over days 110 ∼ 120, as compared to P max(Control) = 5.4 W/m3 and P max(NR) = 3.1 W/m3 for the treated anode after 15 sequential fed-batch operations. The VFA removal rates however were similar for all MFC systems, ranging from 82 to 87%. It could be suggested that the increase in power density for the MB treated electrode resulted from an enhanced electron transport from exo-electrogenic bacteria. MB may also have a selective effect on the bacterial community during the start-up stage, increasing the voltage production and acetate removal from day 1 to 16. However, MFC with NR treated anode produced an initial voltage under 100 mV, with lower coulombic efficiency (CE). NR exhibited less favourable mediator molecule binding to the electrode surface, when subject to pH driven physico-chemical immobilization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号