首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   221篇
  免费   29篇
  2023年   1篇
  2022年   1篇
  2021年   6篇
  2020年   2篇
  2019年   2篇
  2018年   4篇
  2017年   4篇
  2016年   6篇
  2015年   10篇
  2014年   10篇
  2013年   23篇
  2012年   14篇
  2011年   28篇
  2010年   11篇
  2009年   10篇
  2008年   10篇
  2007年   11篇
  2006年   9篇
  2005年   10篇
  2004年   9篇
  2003年   10篇
  2002年   6篇
  2001年   3篇
  2000年   4篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1994年   4篇
  1991年   7篇
  1990年   4篇
  1989年   4篇
  1988年   2篇
  1987年   3篇
  1986年   3篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1975年   1篇
  1974年   1篇
  1967年   2篇
排序方式: 共有250条查询结果,搜索用时 31 毫秒
81.
Novel dispirooxindole-pyrrolidine derivatives have been synthesized through 1,3-dipolar cycloaddition of an azomethine ylide generated from isatin and sarcosine with the dipolarophile 3-(1H-indol-3-yl)-3-oxo-2-(2-oxoindolin-3-ylidene)propanenitrile, and also spiro compound of acenaphthenequinone obtained by the same optimized reaction condition. Synthesized compounds were evaluated for their antimicrobial activity and all the compounds shown significant activity. Anticancer activity was evaluated against A549 human lung adenocarcinoma cancer cell lines. Compounds 7b, 7g, 7i and 7r exhibit very good anticancer activity 62.96%, 62.03%, 67.67% and 60.22%, respectively, at the dose of 200 μg/mL and compound 7i shows IC50 value in 50 μg/mL.  相似文献   
82.
Toll-like receptors (TLRs) play a central role in the innate immune response by recognizing conserved structural patterns in a variety of microbes. TLRs are classified into six families, of which TLR7 family members include TLR7, 8, and 9, which are localized to endolysosomal compartments recognizing viral infection in the form of foreign nucleic acids. In our current study, we focused on TLR8, which has been shown to recognize different types of ligands such as viral or bacterial ssRNA as well as small synthetic molecules. The primary sequences of rodent and non-rodent TLR8s are similar, but the antiviral compound (R848) that activates the TLR8 pathway is species-specific. Moreover, the factors underlying the receptor's species-specificity remain unknown. To this end, comparative homology modeling, molecular dynamics simulations refinement, automated docking and computational mutagenesis studies were employed to probe the intermolecular interactions between this anti-viral compound and TLR8. Furthermore, comparative analyses of modeled TLR8 (rodent and non-rodent) structures have shown that the variation mainly occurs at LRR14-15 (undefined region); hence, we hypothesized that this variation may be the primary reason for the exhibited species-specificity. Our hypothesis was further bolstered by our docking studies, which clearly showed that this undefined region was in close proximity to the ligand-binding site and thus may play a key role in ligand recognition. In addition, the interface between the ligand and TLR8s varied depending upon the amino acid charges, free energy of binding, and interaction surface. Therefore, our current work provides a hypothesis for previous in vivo studies in the context of TLR signaling.  相似文献   
83.

Background

Successful embryogenesis is a critical rate limiting step for the survival and transmission of parasitic worms as well as pathology mediated by them. Hence, blockage of this important process through therapeutic induction of apoptosis in their embryonic stages offers promise for developing effective anti-parasitic measures against these extra cellular parasites. However, unlike in the case of protozoan parasites, induction of apoptosis as a therapeutic approach is yet to be explored against metazoan helminth parasites.

Methodology/Principal Findings

For the first time, here we developed and evaluated flow cytometry based assays to assess several conserved features of apoptosis in developing embryos of a pathogenic filarial nematode Setaria digitata, in-vitro as well as ex-vivo. We validated programmed cell death in developing embryos by using immuno-fluorescence microscopy and scoring expression profile of nematode specific proteins related to apoptosis [e.g. CED-3, CED-4 and CED-9]. Mechanistically, apoptotic death of embryonic stages was found to be a caspase dependent phenomenon mediated primarily through induction of intracellular ROS. The apoptogenicity of some pharmacological compounds viz. DEC, Chloroquine, Primaquine and Curcumin were also evaluated. Curcumin was found to be the most effective pharmacological agent followed by Primaquine while Chloroquine displayed minimal effect and DEC had no demonstrable effect. Further, demonstration of induction of apoptosis in embryonic stages by lipid peroxidation products [molecules commonly associated with inflammatory responses in filarial disease] and demonstration of in-situ apoptosis of developing embryos in adult parasites in a natural bovine model of filariasis have offered a framework to understand anti-fecundity host immunity operational against parasitic helminths.

Conclusions/Significance

Our observations have revealed for the first time, that induction of apoptosis in developing embryos can be a potential approach for therapeutic intervention against pathogenic nematodes and flow cytometry can be used to address different issues of biological importance during embryogenesis of parasitic worms.  相似文献   
84.
Abstract

Metal ions binding to proteins regulate the functions of proteins and may also lead to structural changes. In this communication we demonstrate the interaction and subsequent conformational changes induced in pig gastric mucin (PGM) upon binding to certain chromium(III) complexes like, [Cr(salen)(H2O)2](ClO4) (1), [Cr(en)3]Cl3 (2) and [Cr(EDTA)(H2O)]Na (3) which vary in charge and ionic character. Complexes 1 and 3 have been shown to interact coordinately with PGM whereas complex 2 binds through electrostatic interaction and hydrogen bonding. Steady state fluorescence experiment reveals that at lower concentration of complex 2 there is partial quenching of the tyrosine emission, whereas at higher concentration of the complex the emission intensity is enhanced. On the other hand with complexes 1 and 3 a decrease in fluorescence intensity was observed. PGM viscosity was found to decrease in the presence of complex 1 and 3 due to the formation of flexible fibres through coordinate interaction. Complex 2 was found to facilitate metal induced intertangling of PGM fibres which tends to stabilize the interaction and leads to sol-gel transition with subsequent increase in viscosity. A significant change in CD spectrum of PGM was observed in the presence of complex 2 where random coil spectrum became typical of a α-helical structure with 80% alpha helix content. In the case of complexes 1 and 3 only minor changes in the amplitude of the spectrum were observed. Histochemical analysis supports the contention that complex 2 favors the oligomerisation of PGM and leads to the formation of aggregated mass of macromolecules.  相似文献   
85.
Generally, limited research is extended in studying stability and applicational properties of silver nanoparticles (Ag NPs) synthesized by adopting ‘green chemistry’ protocol. In this work, we report on the synthesis of stable Ag NPs using plant-derived materials such as leaf extract of Neem (Azadirachta indica) and biopolymer pectin from apple peel. In addition, the applicational properties of Ag NPs such as surface-enhanced Raman scattering (SERS) and antibacterial efficiencies were also investigated. As-synthesized nanoparticles (NPs) were characterized using various instrumentation techniques. Both the plant materials (leaf extract and biopolymer) favored the synthesis of well-defined NPs capped with biomaterials. The NPs were spherical in shape with an average particle size between 14-27 nm. These bio-NPs exhibited colloidal stability in most of the suspended solutions such as water, electrolyte solutions (NaCl; NaNO3), biological solution (bovine serum albumin), and in different pH solutions (pH 7; 9) for a reasonable time period of 120 hrs. Both the bio-NPs were observed to be SERS active through displaying intrinsic SERS signals of the Raman probe molecule (Nile blue A). The NPs were effective against the Escherichia coli bacterium when tested in nutrient broth and agar medium. Scanning and high-resolution transmission electron microscopy (SEM and HRTEM) images confirmed cellular membrane damage of nanoparticle treated E. coli cells. These environmental friendly template Ag NPs can be used as an antimicrobial agent and also for SERS based analytical applications.  相似文献   
86.

Objective

To determine the expression patterns of NF-κB regulators and target genes in clear cell renal cell carcinoma (ccRCC), their correlation with von Hippel Lindau (VHL) mutational status, and their association with survival outcomes.

Methods

Meta-analyses were carried out on published ccRCC gene expression datasets by RankProd, a non-parametric statistical method. DEGs with a False Discovery Rate of < 0.05 by this method were considered significant, and intersected with a curated list of NF-κB regulators and targets to determine the nature and extent of NF-κB deregulation in ccRCC.

Results

A highly-disproportionate fraction (~40%; p < 0.001) of NF-κB regulators and target genes were found to be up-regulated in ccRCC, indicative of elevated NF-κB activity in this cancer. A subset of these genes, comprising a key NF-κB regulator (IKBKB) and established mediators of the NF-κB cell-survival and pro-inflammatory responses (MMP9, PSMB9, and SOD2), correlated with higher relative risk, poorer prognosis, and reduced overall patient survival. Surprisingly, levels of several interferon regulatory factors (IRFs) and interferon target genes were also elevated in ccRCC, indicating that an ‘interferon signature’ may represent a novel feature of this disease. Loss of VHL gene expression correlated strongly with the appearance of NF-κB- and interferon gene signatures in both familial and sporadic cases of ccRCC. As NF-κB controls expression of key interferon signaling nodes, our results suggest a causal link between VHL loss, elevated NF-κB activity, and the appearance of an interferon signature during ccRCC tumorigenesis.

Conclusions

These findings identify NF-κB and interferon signatures as clinical features of ccRCC, provide strong rationale for the incorporation of NF-κB inhibitors and/or and the exploitation of interferon signaling in the treatment of ccRCC, and supply new NF-κB targets for potential therapeutic intervention in this currently-incurable malignancy.  相似文献   
87.
Bar-headed geese are renowned for migratory flights at extremely high altitudes over the world''s tallest mountains, the Himalayas, where partial pressure of oxygen is dramatically reduced while flight costs, in terms of rate of oxygen consumption, are greatly increased. Such a mismatch is paradoxical, and it is not clear why geese might fly higher than is absolutely necessary. In addition, direct empirical measurements of high-altitude flight are lacking. We test whether migrating bar-headed geese actually minimize flight altitude and make use of favourable winds to reduce flight costs. By tracking 91 geese, we show that these birds typically travel through the valleys of the Himalayas and not over the summits. We report maximum flight altitudes of 7290 m and 6540 m for southbound and northbound geese, respectively, but with 95 per cent of locations received from less than 5489 m. Geese travelled along a route that was 112 km longer than the great circle (shortest distance) route, with transit ground speeds suggesting that they rarely profited from tailwinds. Bar-headed geese from these eastern populations generally travel only as high as the terrain beneath them dictates and rarely in profitable winds. Nevertheless, their migration represents an enormous challenge in conditions where humans and other mammals are only able to operate at levels well below their sea-level maxima.  相似文献   
88.
89.
Genetically modified crops are one of the prudent options for enhancing the production and productivity of crop plants by safeguarding from the losses due to biotic and abiotic stresses. Agrobacterium-mediated and biolistic transformation methods are used to develop transgenic crop plants in which selectable marker genes (SMG) are generally deployed to identify 'true' transformants. The commonly used SMG obtained from prokaryotic sources when employed in transgenic plants pose risks due to their lethal nature during selection process. In the recent past, some non-lethal SMGs have been identified and used for selection of transformants with increased precision and high selection efficiency. Considering the concerns related to bio-safety of the environment, it is desirable to remove the SMG in order to maximize the commercial success through wide adoption and public acceptance of genetically modified (GM) food crops. In this review, we examine the availability, and the suitability of wide range of non-lethal selection markers and elimination of SMG methods to develop marker-free transgenics for achieving global food security. As the strategies for marker-free plants are still in proof-of-concept stage, adaptation of new genomics tools for identification of novel non-lethal marker systems and its application for developing marker-free transgenics would further strengthen the crop improvement program.  相似文献   
90.
Carbapenem-hydrolyzing class D β-lactamases (CHDLs) represent an emerging antibiotic resistance mechanism encountered among the most opportunistic Gram-negative bacterial pathogens. We report here the substrate kinetics and mechanistic characterization of a prominent CHDL, the OXA-58 enzyme, from Acinetobacter baumannii. OXA-58 uses a carbamylated lysine to activate the nucleophilic serine used for β-lactam hydrolysis. The deacylating water molecule approaches the acyl-enzyme species, anchored at this serine (Ser-83), from the α-face. Our data show that OXA-58 retains the catalytic machinery found in class D β-lactamases, of which OXA-10 is representative. Comparison of the homology model of OXA-58 and the recently solved crystal structures of OXA-24 and OXA-48 with the OXA-10 crystal structure suggests that these CHDLs have evolved the ability to hydrolyze imipenem, an important carbapenem in clinical use, by subtle structural changes in the active site. These changes may contribute to tighter binding of imipenem to the active site and removal of steric hindrances from the path of the deacylating water molecule.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号