首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2147篇
  免费   151篇
  国内免费   1篇
  2023年   10篇
  2022年   34篇
  2021年   62篇
  2020年   28篇
  2019年   33篇
  2018年   44篇
  2017年   62篇
  2016年   75篇
  2015年   84篇
  2014年   107篇
  2013年   172篇
  2012年   204篇
  2011年   148篇
  2010年   100篇
  2009年   105篇
  2008年   96篇
  2007年   104篇
  2006年   99篇
  2005年   115篇
  2004年   91篇
  2003年   63篇
  2002年   70篇
  2001年   24篇
  2000年   21篇
  1999年   17篇
  1998年   24篇
  1997年   8篇
  1996年   12篇
  1995年   12篇
  1994年   9篇
  1993年   10篇
  1992年   13篇
  1991年   14篇
  1990年   16篇
  1989年   19篇
  1988年   15篇
  1987年   12篇
  1986年   13篇
  1985年   12篇
  1984年   9篇
  1983年   12篇
  1982年   10篇
  1981年   7篇
  1980年   10篇
  1979年   9篇
  1978年   7篇
  1977年   10篇
  1976年   9篇
  1975年   10篇
  1972年   7篇
排序方式: 共有2299条查询结果,搜索用时 15 毫秒
121.
Low-density lipoprotein (LDL) oxidation is stimulated by copper. Addition of a recombinant form of apolipoprotein(a) (apo(a); the distinguishing protein component of lipoprotein(a)) containing 17 plasminogen kringle IV-like domains (17K r-apo(a)) protects LDL against oxidation by copper. Protection is specific to apo(a) and is not achieved by plasminogen or serum albumin. When Cu(2+) is added to 17K r-apo(a), its intrinsic fluorescence is quenched in a concentration-dependent and saturable manner. Quenching is unchanged whether performed aerobically or anaerobically and is reversible by ethylenediaminetetraacetate, suggesting that it is due to equilibrium binding of Cu(2+) and not to oxidative destruction of tryptophan residues. The fluorescence change exhibits a sigmoid dependence on copper concentration, and time courses of quenching are complex. At copper concentrations below 10 microM there is little quenching, whereas above 10 microM quenching proceeds immediately as a double-exponential decay. The affinity and kinetics of copper binding to 17K r-apo(a) are diminished in the presence of the lysine analogue epsilon -aminocaproic acid. We propose that copper binding to the kringle domains of 17K is mediated by a His-X-His sequence that is located about 5A from the closest tryptophan residue of the lysine binding pocket. Copper binding may account for the natural resistance to copper-mediated oxidation of lipoprotein(a) relative to LDL that has been previously reported and for the protection afforded by apo(a) from copper-mediated oxidation of LDL that we describe in the present study.  相似文献   
122.
An orally available iron chelator is desirable for the treatment of secondary iron overload. Pyridoxal isonicotinoyl hydrazone (PIH) and its analogs effectively mobilize iron in vivo and in vitro, and are therefore promising candidates for this purpose. PIH analogs undergo significant amino acid-catalyzed hydrolysis in cell culture medium and in serum, achieving equilibrium with their corresponding aldehydes and hydrazides with half-times of 1-8 h. The extent of hydrolysis in RPMI is significant, even in experiments of a few hours' duration, although the half-life of PIH in phosphate-buffered saline (PBS) is approximately 24 h. Therefore, the biological effects (e.g., 59Fe mobilization, toxicity) of these iron chelators have been underestimated in previous studies. Measurement of the affinity of PIH analogs for Fe(3+) under conditions in which hydrolysis is minimal resulted in conditional affinity constants of 10(26) to 10(27) M, which are much lower than predicted by the overall formation constants determined under conditions that likely allowed extensive hydrolysis. These data indicate the importance of hydrolysis of PIH analogs in the interpretation of previous studies, and the importance of designing clinically useful analogs whose efficacies are not limited by hydrolysis.  相似文献   
123.
Mammalian cells grown in suspension produce waste metabolites such as lactate, alanine, and ammonia, which reduce the yield of cell mass and the desired product on the nutrients supplied. Previous studies (Cruz et al., 1999; Europa et al., 2000; Follstad et al., 1999) have shown that the cells can be made to alter their metabolism by starving them on their nutrients in continuous cultures at low dilution rates or starting the culture as a fed-batch. This leads to multiple steady states in continuous reactors, with some states being more favorable than others. Mathematical models that take into account the metabolic regulation that leads to these multiple steady states are invaluable tools for bioreactor control. In this article we present a cybernetic modeling strategy in which Metabolic Flux Analysis (MFA) is used to guide the cybernetic formulation. The hybridoma model presented as a result of this strategy considers the partially substitutable, partially complementary nature of glucose and glutamine. The choice of competitions within the network is guided by MFA and the model is successful in explaining the three multiple steady states observed. The cybernetic model though identified for the hybridoma experiments of Hu and others (Europa et al., 2000) seem generally applicable to mammalian systems as it captures the pathways that are common to mammalian cells grown in suspension. The model presented here could be used for start-up strategies for continuous reactors and model-based feedback control for maintaining high productivity of the reactor.  相似文献   
124.
An essential component of type III secretion systems (TTSS) is a supramolecular structure termed the needle complex. In Salmonella enterica, at least four proteins make up this structure: InvG, PrgH, PrgK, and PrgI. Another protein, PrgJ, is thought to play a role in the assembly of this structure, but its function is poorly understood. We have analyzed the expression and localization of PrgJ and the needle protein PrgI in different S. enterica serovar Typhimurium mutant strains. We found that the levels of PrgI and PrgJ were significantly reduced in a TTSS-deficient invA mutant strain and that the decreased levels were due to protein instability. In addition, we found that PrgJ, although associated with the needle complex in wild-type S. enterica serovar Typhimurium, was absent from needle complexes obtained from an invJ mutant strain, which exhibits very long needle substructures. We suggest that PrgJ is involved in capping the needle substructure of the needle complex.  相似文献   
125.
The calcium sensor protein visinin-like protein-1 (VILIP-1) was isolated from a brain cDNA yeast two-hybrid library using the large cytoplasmic domain of the alpha4 subunit as a bait. VILIP-1 is a myristoylated calcium sensor protein that contains three functional calcium binding EF-hand motifs. The alpha4 subunit residues 302-339 were found to be essential for the interaction with VILIP-1. VILIP-1 coimmunopurified with detergent-solubilized recombinant alpha4beta2 acetylcholine receptors (AChRs) expressed in tsA201 cells and with native alpha4 AChRs isolated from brain. Coexpression of VILIP-1 with recombinant alpha4beta2 AChRs up-regulated their surface expression levels approximately 2-fold and increased their agonist sensitivity to acetylcholine approximately 3-fold. The modulation of the recombinant alpha4beta2 AChRs by VILIP-1 was attenuated in VILIP-1 mutants that lacked the ability to be myristoylated or to bind calcium. Collectively, these results suggest that VILIP-1 represents a novel modulator of alpha4beta2 AChRs that increases their surface expression levels and agonist sensitivity in response to changes in the intracellular levels of calcium.  相似文献   
126.
In an earlier report on fungal protease (F-prot)-fatty acid biocomposite film formation [Gole et al. Anal. Chem. 2000, 72, 4301], it was observed that the biocatalytic activity of the immobilized enzyme was comparable to that of the free enzyme in solution. However, a somewhat negative aspect of the protocol was the steady loss in activity during reuse and storage of the biocomposite film. In this paper, we address the latter issues and demonstrate successful attempts toward the realization of efficient biocomposite films with enhanced biological activity, temporal stability, and excellent reusability. The improved performance of the F-prot-stearic acid biocomposite is accomplished by preordering the fatty acid film by incorporation of Pb(2+) ions into the lipid matrix prior to enzyme immobilization. The lead cation induces lamellar ordering in the lipid film and thus facilitates diffusion of the F-prot molecules into the lipid matrix and accessibility of the substrate molecules (hemoglobin, Hb) to the entrapped F-prot enzyme molecules. The preordering consequently leads to effective control of the "mass transport" problem and might be responsible for the enhanced biological activity ( approximately 36%) of the enzyme molecules in the biocomposite in comparison with the free enzyme in solution, as well the excellent reusability of the composite film. In addition to biocatalytic activity measurements, the formation and characterization of the F-prot-lead stearate biocomposite films was done by quartz crystal microgravimetry and X-ray diffraction.  相似文献   
127.
The ATP-binding cassette (ABC) transporters are a large family of proteins responsible for the translocation of a variety of compounds across the membranes of both prokaryotes and eukaryotes. The inter-protein and intra-protein interactions in these traffic ATPases are still only poorly understood. In the present study we describe, for the first time, an extensive yeast two-hybrid (Y2H)-based analysis of the interactions of the cytoplasmic loops of the yeast pleiotropic drug resistance (Pdr) protein, Pdr5p, an ABC transporter of Saccharomyces cerevisiae. Four of the major cytosolic loops that have been predicted for this protein [including the two nucleotide-binding domain (NBD)-containing loops and the cytosolic C-terminal region] were subjected to an extensive inter-domain interaction study in addition to being used as baits to identify potential interacting proteins within the cell using the Y2H system. Results of these studies have revealed that the first cytosolic loop (CL1) – containing the first NBD domain – and also the C-terminal region of Pdr5p interact with several candidate proteins. The possibility of an interaction between the CL1 loops of two neighboring Pdr5p molecules was also indicated, which could possibly have implications for dimerization of this protein. Electronic Publication  相似文献   
128.
Previous studies have identified two tissue- and cell-specific, yet functionally redundant, sucrose synthase (SuSy) genes, Sh1 and Sus1, which encode biochemically similar isozymes, SH1 and SUS1 (previously referred to as SS1 and SS2, respectively). Here we report evidence for a third SuSy gene in maize, Sus3, which is more similar to dicot than to monocot SuSys. RNA and/or protein blot analyses on developing kernels and other tissues show evidence of expression of Sus3, although at the lowest steady-state levels of the three SuSy gene products and without a unique pattern of tissue specificity. Immunoblots of sh1sus1-1 embryos that are either lacking or deficient for the embryo-specific SUS1 protein have shown a protein band which we attribute to the Sus3 gene, and may contribute to the residual enzyme activity seen in embryos of the double mutant. We also studied developing seeds of the double mutant sh1sus1-1, which is missing 99.5% of SuSy enzyme activity, for evidence of co-regulation of several genes of sugar metabolism. We found a significant reduction in the steady-state levels of Miniature-1 encoded cell wall invertase2, and Sucrose transporter (Sut) mRNAs in the double mutant, relative to the lineage-related sh1Sus1 and sh1Sus1 kernels. Down-regulation of the Mn1 gene was also reflected in significant reductions in cell wall invertase activity. Co-regulatory changes were not seen in the expression of Sucrose phosphate synthase, UDP-glucose pyrophosphorylase, and ADP-glucose pyrophosphorylase.  相似文献   
129.
The kdpFABC operon, coding for a high-affinity K(+)-translocating P-type ATPase, is expressed in Escherichia coli as a backup system during K(+) starvation or an increase in medium osmolality. Expression of the operon is regulated by the membrane-bound sensor kinase KdpD and the cytosolic response regulator KdpE. From a nitrogen-fixing cyanobacterium, Anabaena sp. strain L-31, a kdpDgene was cloned (GenBank accession no. AF213466) which codes for a KdpD protein (365 amino acids) that lacks both the transmembrane segments and C-terminal transmitter domain and thus is shorter than E. coli KdpD. A chimeric kdpD gene was constructed and expressed in E. coli coding for a protein (Anacoli KdpD), in which the first 365 amino acids of E. coli KdpD were replaced by those from Anabaena KdpD. In everted membrane vesicles, this chimeric Anacoli KdpD protein exhibited activities, such as autophosphorylation, transphosphorylation and ATP-dependent dephosphorylation of E. coli KdpE, which closely resemble those of the E. coli wild-type KdpD. Cells of E. coli synthesizing Anacoli KdpD expressed kdpFABC in response to K(+) limitation and osmotic upshock. The data demonstrate that Anabaena KdpD can interact with the E. coliKdpD C-terminal domain resulting in a protein that is functional in vitro as well as in vivo.  相似文献   
130.
Visinin-like protein-1 (VILIP-1), a myristoylated calcium sensor protein with three EF-hand motifs, modulates adenylyl cyclase activity. It translocates to membranes when a postulated "calcium-myristoyl switch" is triggered by calcium-binding to expose its sequestered myristoyl moiety. We investigated the contributions of the EF-hand motifs to the translocation of VILIP-1 to membranes and to the modulation of adenylyl cyclase activity. Mutation of residues crucial for binding calcium within each one of the EF-hand motifs indicated that they all contributed to binding calcium. Simultaneous mutations of all of the three EF-hand motifs completely abolished VILIP-1's ability to bind calcium, attenuated but did not eliminate its modulation of adenylyl cyclase activity, and abolished its calcium-dependence for association with cellular membranes. These results show that the calcium-binding EF-hand motifs of VILIP-1 do not have an essential role in modulating adenylyl cyclase activity but instead have a structural role in activating the "calcium-myristoyl switch" of VILIP-1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号