首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   398篇
  免费   25篇
  2023年   1篇
  2022年   9篇
  2021年   9篇
  2020年   9篇
  2019年   2篇
  2018年   15篇
  2017年   9篇
  2016年   21篇
  2015年   9篇
  2014年   27篇
  2013年   46篇
  2012年   24篇
  2011年   47篇
  2010年   21篇
  2009年   21篇
  2008年   27篇
  2007年   37篇
  2006年   22篇
  2005年   19篇
  2004年   16篇
  2003年   14篇
  2002年   7篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
排序方式: 共有423条查询结果,搜索用时 15 毫秒
101.
1. Extracellular ATP is recognized as a peripheral modulator of pain. Activation of ionotropic P2X receptors in sensory neurons has been implicated in induction of pain, whereas metabotropic P2Y receptors in potentiation of pain induced by chemical or physical stimuli via capsaicin sensitive TRPV1 channel. Here we report that P2Y2 receptor activation by ATP can activate the TRPV1 channel in absence of any other stimuli. 2. ATP-induced Ca2+ signaling was studied in Neuro2a cells. ATP evoked release of intracellular Ca2+ from ER and Ca2+ influx through a fast inactivating channel. The Ca2+ response was induced by P2Y receptor agonists in the order of potency ATP>or=UTP>or=ATPgammaS>ADP and was inhibited by suramin and PPADS. The P2X receptor agonist alpha beta methyl ATP was ineffective. 3. The Ca2+ influx was blocked by ruthenium red, an inhibitor of TRPV1 channel. Capsaicin, the most potent activator of the TRPV1 channel, evoked a fast inactivating Ca2+ transient suggesting the presence of endogenous TRPV1 channels in Neuro2a cells. NMS and PDBu, repressors of IP3 formation, drastically inhibited both the components of Ca2+ response. 4. Our data show co-activation of the P2Y2 receptor and capsaicin sensitive TRPV1 channel by ATP. Such functional interaction between endogenous P2Y2 receptor and TRPV1 channels could explain the ATP-induced pain.  相似文献   
102.
103.
The ability of a cationic lipid to deliver plasmid DNA (pDNA) in presence of the neurotoxic fragment of amyloid -peptide was evaluated. Pre-treatment of cells with AP (25–35) peptide resulted in a modest increase in transgene expression. When AP (25–35) peptide was mixed with the pDNA/liposome complex and used, the complexes lost their ability to transfect. However, the reverse sequenced AP (35–25) peptide demonstrated no significant differences in transgene expression in pre-treated cells, and in cells where AP (35–25) peptide was mixed with pDNA/liposome complexes and transfected. The amount of pDNA delivered to the cells was decreased in presence of AP (25–35) as measured with flow cytometry using fluorescently labeled liposomes. The decreased endocytosis may be due to their rod-like structure formation as demonstrated by electron microscopy and atomic force microscopy (AFM). These results demonstrate that AP (25–35) peptide may interfere with gene delivery with cationic systems.  相似文献   
104.
105.
106.
COVID-19 pandemic has caused severe disruption of global health and devastated the socio-economic conditions all over the world. The disease is caused by SARS-CoV-2 virus that belongs to the family of Coronaviruses which are known to cause a wide spectrum of diseases both in humans and animals. One of the characteristic features of the SARS-CoV-2 virus is the high reproductive rate (R0) that results in high transmissibility of the virus among humans. Vaccines are the best option to prevent and control this disease. Though, the traditional intramuscular (IM) route of vaccine administration is one of the effective methods for induction of antibody response, a needle-free self-administrative intradermal (ID) immunization will be easier for SARS-CoV-2 infection containment, as vaccine administration method will limit human contacts. Here, we have assessed the humoral and cellular responses of a RBD-based peptide immunogen when administered intradermally in BALB/c mice and side-by-side compared with the intramuscular immunization route. The results demonstrate that ID vaccination is well tolerated and triggered a significant magnitude of humoral antibody responses as similar to IM vaccination. Additionally, the ID immunization resulted in higher production of IFN-γ and IL-2 suggesting superior cellular response as compared to IM route. Overall, our data indicates immunization through ID route provides a promising alternative approach for the development of self-administrative SARS-CoV-2 vaccine candidates.  相似文献   
107.
Apart from playing key roles in drug metabolism and adverse drug–drug interactions, CYPs are potential drug targets to treat a variety of diseases. The intervention of over expression of P450 1A1 (CYP1A1) in tumor cells is identified as a novel strategy for anticancer therapy. We investigated three isoforms of CYP1 family (CYP1A1, CYP1A2, and CYP1B1) for their substrate specificity. The understanding of macromolecular features that govern substrate specificity is required to understand the interplay between the protein function and dynamics. This can help in design of new antitumor molecule specifically metabolized by CYP1A1 to mediate their antitumor activity. In the present study, we carried out the comparative protein structure analysis of the three isoforms. Sequence alignment, root mean square deviation (RMSD) analysis, B-factor analysis was performed to give a better understanding of the macromolecular features involved in substrate specificity and to understand the interplay between protein dynamics and functions which will have important implications on rational design of anticancer drugs. We identified the differences in amino acid residues among the three isoforms of CYP1 family, which may account for differential substrate specificity. Six putative substrate recognition sequences are characterized along with the regions they form in the protein structure. Further the RMSD and B-factor analysis provides the information about the identified residues having the maximum RMSD and B-factor deviations.  相似文献   
108.
109.
We report the efficacy of an aldose reductase (ALDRXV4) enzyme from Xerophyta viscosa Baker in enhancing the prospects of plant’s survival under abiotic stress. Transgenic tobacco plants overexpressing ALDRXV4 cDNA showed alleviation of NaCl and mannitol-induced abiotic stress. The transgenic plants survived longer periods of water deficiency and salinity stress and exhibited improved recovery after rehydration as compared to the wild type plants. The increased synthesis of aldose reductase in transgenic plants correlated with reduced methylglyoxal and malondialdehyde accumulation and an elevated level of sorbitol under stress conditions. In addition, the transgenic lines showed better photosynthetic efficiency, less electrolyte damage, greater water retention, higher proline accumulation, and favorable ionic balance under stress conditions. Together, these findings suggest the potential of engineering aldose reductase levels for better performance of crop plants growing under drought and salt stress conditions.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号