首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   956篇
  免费   63篇
  国内免费   1篇
  2023年   3篇
  2022年   14篇
  2021年   29篇
  2020年   19篇
  2019年   12篇
  2018年   24篇
  2017年   13篇
  2016年   37篇
  2015年   30篇
  2014年   51篇
  2013年   86篇
  2012年   56篇
  2011年   80篇
  2010年   44篇
  2009年   45篇
  2008年   59篇
  2007年   66篇
  2006年   61篇
  2005年   41篇
  2004年   35篇
  2003年   32篇
  2002年   19篇
  2001年   11篇
  2000年   10篇
  1999年   8篇
  1998年   3篇
  1997年   4篇
  1996年   5篇
  1995年   6篇
  1992年   5篇
  1991年   3篇
  1989年   7篇
  1988年   11篇
  1987年   3篇
  1986年   4篇
  1984年   5篇
  1983年   3篇
  1981年   3篇
  1979年   5篇
  1978年   3篇
  1975年   12篇
  1972年   4篇
  1970年   6篇
  1969年   3篇
  1968年   3篇
  1966年   4篇
  1965年   2篇
  1964年   4篇
  1962年   2篇
  1960年   5篇
排序方式: 共有1020条查询结果,搜索用时 62 毫秒
81.
Renal clearance of quantum dots   总被引:9,自引:0,他引:9  
The field of nanotechnology holds great promise for the diagnosis and treatment of human disease. However, the size and charge of most nanoparticles preclude their efficient clearance from the body as intact nanoparticles. Without such clearance or their biodegradation into biologically benign components, toxicity is potentially amplified and radiological imaging is hindered. Using intravenously administered quantum dots in rodents as a model system, we have precisely defined the requirements for renal filtration and urinary excretion of inorganic, metal-containing nanoparticles. Zwitterionic or neutral organic coatings prevented adsorption of serum proteins, which otherwise increased hydrodynamic diameter by >15 nm and prevented renal excretion. A final hydrodynamic diameter <5.5 nm resulted in rapid and efficient urinary excretion and elimination of quantum dots from the body. This study provides a foundation for the design and development of biologically targeted nanoparticles for biomedical applications.  相似文献   
82.
Severe acute respiratory syndrome coronavirus (SARS-CoV) first appeared in Southern China in November 2002, and then quickly spread to 33 countries on five continents along international air travel routes. Although the SARS epidemic has been contained, there is a clear need for a safe and effective vaccine should an outbreak of a SARS-CoV infection reappear in human population. In this study, we tested four DNA-vaccine constructs: (1) pLL70, containing cDNA for the SARS-CoV spike (S) gene; (2) pcDNA-SS, containing codon-optimized S gene for SARS-CoV S protein (residues 12-1255) fused with a leader sequence derived from the human CD5 gene; (3) pcDNA-St, containing the gene encoding the N-portion of the codon-optimized S gene (residues 12-532) with the CD5 leader sequence; (4) pcDNA-St-VP22C, containing the gene encoding the N-portion of the codon-optimized S protein with the CD5 leader sequence fused with the C-terminal 138 amino acids of the bovine herpesvirus-1 (BHV-1) major tegument protein VP22. Each of these plasmids was intradermally administered to C57BL/6 mice in three separate immunizations. Analysis of humoral and cellular immune responses in immunized mice demonstrated that pcDNA-SS and pcDNA-St-VP22C are the most immunogenic SARS vaccine candidates.  相似文献   
83.
Viruses constantly adapt to and modulate the host environment during replication and propagation. Both DNA and RNA viruses encode multifunctional proteins that interact with and modify host cell proteins. While viral genomes were the first complete sequences known, the corresponding proteomes are only now elucidated, with some surprising results. Even more daunting is the task to globally monitor the impact of viral infection on the proteome of the host cell and many technical hurdles must still be overcome in order to facilitate robust and reproducible measurements. Further complicating the picture is the dynamic nature of proteins, including post-translational modifications, enzymatic cleavage and activation or destruction by proteolytic events. Nevertheless, several promising studies have been published using high-throughput methods directly measuring protein abundance. Particularly, quantitative or semiquantitative mass spectrometry-based analysis of viral and cellular proteomes are now being used to characterize viruses and their host interaction. In addition, the full set of interactions between viral and host proteins, the interactome, is beginning to emerge, with often unexpected interactions that need to be carefully validated. In this review, we will discuss two major areas of viral proteomics: first, virion proteomics (such as the protein characterization of viral particles) and second, proteoviromics, including the viral protein interactomics and the quantitative analysis of host cell proteome during viral infection.  相似文献   
84.
Photosynthesis Research - Carbon concentrating mechanisms (CCMs) in plants are abaptive features that have evolved to sustain plant growth in unfavorable environments, especially at low atmospheric...  相似文献   
85.
86.
Journal of Plant Biochemistry and Biotechnology - A glycosylated heat stable trypsin chymotrypsin inhibitor was isolated from Cyamopsis tetragonoloba seeds. It is being reported for the first time...  相似文献   
87.
In humans, it is well known that the parental reproductive age has a strong influence on mutations transmitted to their progeny. Meiotic nondisjunction is known to increase in older mothers, and base substitutions tend to go up with paternal reproductive age. Hence, it is clear that the germinal mutation rates are a function of both maternal and paternal ages in humans. In contrast, it is unknown whether the parental reproductive age has an effect on somatic mutation rates in the progeny, because these are rare and difficult to detect. To address this question, we took advantage of the plant model system Arabidopsis (Arabidopsis thaliana), where mutation detector lines allow for an easy quantitation of somatic mutations, to test the effect of parental age on somatic mutation rates in the progeny. Although we found no significant effect of parental age on base substitutions, we found that frameshift mutations and transposition events increased in the progeny of older parents, an effect that is stronger through the maternal line. In contrast, intrachromosomal recombination events in the progeny decrease with the age of the parents in a parent-of-origin-dependent manner. Our results clearly show that parental reproductive age affects somatic mutation rates in the progeny and, thus, that some form of age-dependent information, which affects the frequency of double-strand breaks and possibly other processes involved in maintaining genome integrity, is transmitted through the gametes.In humans, it has long been recognized that the reproductive age of the parents has an influence on the health of their progeny. An older reproductive age of the mother is known to increase the fraction of aneuploid gamete formation (Hurles, 2012). For instance, the risk for a trisomy increases from 2% to 3% for mothers in their 20s to more than 30% for mothers in their 40s (Hassold and Hunt, 2009). The age of the father also has an effect on the frequency of spontaneous congenital disorders and common complex diseases, such as autism and some cancers (Goriely and Wilkie, 2012). Indeed, sperm from 36- to 57-year-old men have more double-strand breaks (DSBs) than those of 20- to 35-year-old individuals (Singh et al., 2003). Similarly, the efficiency of DSB repair was reported to decrease with age in vegetative tissues of the plant model system Arabidopsis (Arabidopsis thaliana; Boyko et al., 2006).Owing to the continuous divisions of spermatogonial stem cells, the male germline of humans is thought to be more mutagenic than the female germline. Indeed, it was shown that the paternal germline is more mutagenic than the maternal one with respect to base substitutions (Kong et al., 2012) and replication slippage errors at microsatellites (Sun et al., 2012). It is also known that carriers of germline mutations in mismatch repair (MMR) genes in humans are prone to get colorectal cancer and that the risk depends on the parent-of-origin of the mutation (van Vliet et al., 2011). The molecular basis of these parental effects is not entirely clear but is likely to involve higher rates of nondisjunction during female meiosis, higher mutation rates during spermatogenesis, and probably additional effects of aging.In contrast to the effect of parental age on germline mutations, not much is known about potential effects of parental reproductive age on somatic mutation rates in the offspring. However, it has been shown in animal studies that radiation of males can lead to somatic mutations in their progeny—and subsequent generations—that cannot be attributed to mutations in the paternal germline (for review, see Little et al., 2013). Moreover, several recent studies have illustrated the existence of complex parental and transgenerational effects in humans, although their molecular basis is not clear (Grossniklaus et al., 2013). These effects can be of either genetic nature (but the effect is seen even in offspring that did not inherit the genetic variant from their parents; for review, see Nadeau, 2009) or epigenetic nature (where environmental influences can possibly exert effects on subsequent generations; for review, see Pembrey et al., 2006; Pembrey, 2010; Curley et al., 2011). It is currently not known whether such parental effects affect the somatic mutation rates in the offspring or whether the effects are modulated by parental age.Taking advantage of the plant model system Arabidopsis, in which various somatic mutation rates can readily be assessed (Bashir et al., 2014), we investigated the effects of parental reproductive age on somatic mutation rates in the progeny. We report that there is a pronounced effect of parental age on somatic mutation rates in their offspring in a parent-of-origin-dependent fashion. Thus, some form of parental information, which is inherited through the gametes to the next generation, seems to alter the somatic mutation rates in the progeny and changes with parental reproductive age.  相似文献   
88.
89.
16-Dehydropregnenolone undergoes a smooth annulation with propan-1-amine and aromatic aldehydes. Several amine derivatives of 16- dehydropregnenolone were synthesized and evaluated as inhibitors of DPP-IV. The structures of compounds were confirmed by 1H, 13C, NMR and mass spectral analysis. Among 17 compounds evaluated only five compounds 1, 9, 13, 15 and 16 demonstrated significant inhibition of DPP. This study suggest that introduction of appropriate substituents in the 16-dehydropregnenolone plays an important role in DPP-IV inhibitory activity.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号