全文获取类型
收费全文 | 438篇 |
免费 | 27篇 |
专业分类
465篇 |
出版年
2023年 | 1篇 |
2022年 | 9篇 |
2021年 | 11篇 |
2020年 | 9篇 |
2019年 | 2篇 |
2018年 | 16篇 |
2017年 | 9篇 |
2016年 | 22篇 |
2015年 | 9篇 |
2014年 | 28篇 |
2013年 | 49篇 |
2012年 | 27篇 |
2011年 | 51篇 |
2010年 | 24篇 |
2009年 | 21篇 |
2008年 | 29篇 |
2007年 | 37篇 |
2006年 | 22篇 |
2005年 | 19篇 |
2004年 | 17篇 |
2003年 | 14篇 |
2002年 | 8篇 |
2001年 | 3篇 |
2000年 | 3篇 |
1999年 | 4篇 |
1997年 | 1篇 |
1996年 | 1篇 |
1995年 | 1篇 |
1994年 | 1篇 |
1989年 | 1篇 |
1987年 | 2篇 |
1985年 | 1篇 |
1983年 | 1篇 |
1982年 | 1篇 |
1979年 | 2篇 |
1978年 | 3篇 |
1977年 | 3篇 |
1976年 | 1篇 |
1973年 | 2篇 |
排序方式: 共有465条查询结果,搜索用时 15 毫秒
81.
82.
83.
A rapid procedure for the isolation, identification, and estimation of citrinin, the antibiotic cum nephrotoxin, has been proposed. The colorimetric procedure proposed for estimation makes use of the phenolic function of the compound. This method was found to be applicable to a wide variety of materials. 相似文献
84.
Cdk1/Erk2- and Plk1-dependent phosphorylation of a centrosome protein, Cep55, is required for its recruitment to midbody and cytokinesis 总被引:1,自引:0,他引:1
Fabbro M Zhou BB Takahashi M Sarcevic B Lal P Graham ME Gabrielli BG Robinson PJ Nigg EA Ono Y Khanna KK 《Developmental cell》2005,9(4):477-488
Centrosomes in mammalian cells have recently been implicated in cytokinesis; however, their role in this process is poorly defined. Here, we describe a human coiled-coil protein, Cep55 (centrosome protein 55 kDa), that localizes to the mother centriole during interphase. Despite its association with gamma-TuRC anchoring proteins CG-NAP and Kendrin, Cep55 is not required for microtubule nucleation. Upon mitotic entry, centrosome dissociation of Cep55 is triggered by Erk2/Cdk1-dependent phosphorylation at S425 and S428. Furthermore, Cep55 locates to the midbody and plays a role in cytokinesis, as its depletion by siRNA results in failure of this process. S425/428 phosphorylation is required for interaction with Plk1, enabling phosphorylation of Cep55 at S436. Cells expressing phosphorylation-deficient mutant forms of Cep55 undergo cytokinesis failure. These results highlight the centrosome as a site to organize phosphorylation of Cep55, enabling it to relocate to the midbody to function in mitotic exit and cytokinesis. 相似文献
85.
86.
Isolation and characterization of a novel haemoprotein b-559 from Bengal gram (Cicer arietinum). 下载免费PDF全文
A haemoprotein was purified to apparent homogeneity from Bengal-gram seeds. The purified protein exhibited an absorption maximum at 412 nm (Soret band) that upon reduction with dithionite gave rise to a shift in the Soret band to 426 nm with concomitant appearance of an alpha-band at 559 nm and a beta-band at 530 nm. In the reduced state the Bengal-gram haemoprotein showed reactivity towards CO, nitrite and hydroxylamine. SDS/polyacrylamide-slab-gel electrophoresis showed that the haemoprotein has Mr 78,000. Gel-filtration and ultracentrifugal analyses suggest that the Bengal-gram haemoprotein is oligomeric in nature. Since it differs from photosynthetic membrane cytochrome b-559 in solubility in buffer, in reactivity towards CO and in molecular size, it appears to be a novel haemoprotein b-559. 相似文献
87.
Hyzinski-García MC Vincent MY Haskew-Layton RE Dohare P Keller RW Mongin AA 《Journal of neurochemistry》2011,118(1):140-152
In our previous work, we found that perfusion of the rat cerebral cortex with hypo-osmotic medium triggers massive release of the excitatory amino acid L-glutamate but decreases extracellular levels of L-glutamine (R. E. Haskew-Layton et al., PLoS ONE, 3: e3543). The release of glutamate was linked to activation of volume-regulated anion channels, whereas mechanism(s) responsible for alterations in extracellular glutamine remained unclear. When mannitol was added to the hypo-osmotic medium to reverse reductions in osmolarity, changes in microdialysate levels of glutamine were prevented, indicating an involvement of cellular swelling. As the main source of brain glutamine is astrocytic synthesis and export, we explored the impact of hypo-osmotic medium on glutamine synthesis and transport in rat primary astrocyte cultures. In astrocytes, a 40% reduction in medium osmolarity moderately stimulated the release of L-[(3) H]glutamine by ~twofold and produced no changes in L-[(3) H]glutamine uptake. In comparison, hypo-osmotic medium stimulated the release of glutamate (traced with D-[(3) H]aspartate) by more than 20-fold. In whole-cell enzymatic assays, we discovered that hypo-osmotic medium caused a 20% inhibition of astrocytic conversion of L-[(3) H]glutamate into L-[(3) H]glutamine by glutamine synthetase. Using an HPLC assay, we further found a 35% reduction in intracellular levels of endogenous glutamine. Overall, our findings suggest that cellular swelling (i) inhibits astrocytic glutamine synthetase activity, and (ii) reduces substrate availability for this enzyme because of the activation of volume-regulated anion channels. These combined effects likely lead to reductions in astrocytic glutamine export in vivo and may partially explain occurrence of hyperexcitability and seizures in human hyponatremia. 相似文献
88.
Quantitative analysis of oyster larval proteome provides new insights into the effects of multiple climate change stressors 下载免费PDF全文
Ramadoss Dineshram Kondethimmanahalli Chandramouli Ginger Wai Kuen Ko Huoming Zhang Pei‐Yuan Qian Timothy Ravasi Vengatesen Thiyagarajan 《Global Change Biology》2016,22(6):2054-2068
The metamorphosis of planktonic larvae of the Pacific oyster (Crassostrea gigas) underpins their complex life‐history strategy by switching on the molecular machinery required for sessile life and building calcite shells. Metamorphosis becomes a survival bottleneck, which will be pressured by different anthropogenically induced climate change‐related variables. Therefore, it is important to understand how metamorphosing larvae interact with emerging climate change stressors. To predict how larvae might be affected in a future ocean, we examined changes in the proteome of metamorphosing larvae under multiple stressors: decreased pH (pH 7.4), increased temperature (30 °C), and reduced salinity (15 psu). Quantitative protein expression profiling using iTRAQ‐LC‐MS/MS identified more than 1300 proteins. Decreased pH had a negative effect on metamorphosis by down‐regulating several proteins involved in energy production, metabolism, and protein synthesis. However, warming switched on these down‐regulated pathways at pH 7.4. Under multiple stressors, cell signaling, energy production, growth, and developmental pathways were up‐regulated, although metamorphosis was still reduced. Despite the lack of lethal effects, significant physiological responses to both individual and interacting climate change related stressors were observed at proteome level. The metamorphosing larvae of the C. gigas population in the Yellow Sea appear to have adequate phenotypic plasticity at the proteome level to survive in future coastal oceans, but with developmental and physiological costs. 相似文献
89.
Interaction of antibodies to ganglioside GM1 with Neuro2a cells was studied to investigate the role of GM1 in cell signaling. Binding of anti-GM1 to Neuro2a cells induced the formation of 3H-inositol phosphates (3H-IPs) and elevated the intracellular Ca2+ concentration [Ca2+]i. The rise in [Ca2+]i was due to the influx of Ca2+ from the extracellular medium and release from intracellular Ca2+ pools. The Ca2+ influx pathway did not allow the permeation of Na+ or K+. The influx was inhibited by amiloride, a specific blocker of T-type Ca2+ channels, whereas nifedipine and diltiazem, blockers of L-type Ca2+ channels, did not have any effect. Thus, anti-GM1 appears to activate a T-type Ca2+ channel in Neuro2a cells. The intracellular Ca2+ release was inhibited by pretreatment of cells with neomycin sulfate, phorbol dibutyrate, and pertussis toxin (PTx), which also inhibited the 3H-IP formation in Neuro2a cells. Addition of caffeine neither elevated the [Ca2+]i nor affected the anti-GM1-induced [Ca2+]i rise. The data reveal that the binding of anti-GM1 to Neuro2a cells activates phospholipase C via a PTx-sensitive G protein, which leads to formation of IPs and release of Ca2+ from inositol trisphosphate-sensitive pool of endoplasmic reticulum. Anti-GM1 also arrested the differentiation of Neuro2a cells in culture and significantly stimulated their proliferation. This stimulatory effect of anti-GM1 on cell proliferation was blocked by amiloride but not by PTx, suggesting that the influx of Ca2+ was essentially required for cell proliferation. Our data suggest a role for GM1 in the regulation of transmembrane signaling events and cell growth. 相似文献
90.
Genome duplication and segregation normally are completed before cell division in all organisms. The temporal relation of duplication and segregation, however, can vary in bacteria. Chromosomal regions can segregate towards opposite poles as they are replicated or can stay cohered for a considerable period before segregation. The bacterium Vibrio cholerae has two differently sized circular chromosomes, chromosome I (chrI) and chrII, of about 3 and 1 Mbp, respectively. The two chromosomes initiate replication synchronously, and the shorter chrII is expected to complete replication earlier than the longer chrI. A question arises as to whether the segregation of chrII also is completed before that of chrI. We fluorescently labeled the terminus regions of chrI and chrII and followed their movements during the bacterial cell cycle. The chrI terminus behaved similarly to that of the Escherichia coli chromosome in that it segregated at the very end of the cell division cycle: cells showed a single fluorescent focus even when the division septum was nearly complete. In contrast, the single focus representing the chrII terminus could divide at the midcell position well before cell septation was conspicuous. There were also cells where the single focus for chrII lingered at midcell until the end of a division cycle, like the terminus of chrI. The single focus in these cells overlapped with the terminus focus for chrI in all cases. It appears that there could be coordination between the two chromosomes through the replication and/or segregation of the terminus region to ensure their segregation to daughter cells. 相似文献