首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   410篇
  免费   26篇
  2023年   1篇
  2022年   7篇
  2021年   10篇
  2020年   9篇
  2019年   2篇
  2018年   15篇
  2017年   11篇
  2016年   21篇
  2015年   10篇
  2014年   29篇
  2013年   46篇
  2012年   25篇
  2011年   48篇
  2010年   21篇
  2009年   21篇
  2008年   27篇
  2007年   38篇
  2006年   22篇
  2005年   19篇
  2004年   16篇
  2003年   14篇
  2002年   7篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1991年   2篇
  1990年   1篇
  1980年   1篇
排序方式: 共有436条查询结果,搜索用时 15 毫秒
51.
Secretory phospholipase 2 (sPLA2) acts as a mediator between proximal and distal events of the inflammatory cascade. Its role in SARS-CoV-2 infection is unknown, but could contribute to COVID-19 inflammasome activation and cellular damage. We present the first report of plasma sPLA2 levels in adults and children with COVID-19 compared with controls. Currently asymptomatic adults with a history of recent COVID-19 infection (≥4 weeks before) identified by SARS-CoV-2 IgG antibodies had sPLA2 levels similar to those who were seronegative (9 ± 6 vs.17 ± 28 ng/mL, P = 0.26). In contrast, children hospitalized with severe COVID-19 had significantly elevated sPLA2 compared with those with mild or asymptomatic SARS-CoV-2 infection (269 ± 137 vs. 2 ± 3 ng/mL, P = 0.01). Among children hospitalized with multisystem inflammatory syndrome in children (MIS-C), all had severe disease requiring pediatric intensive care unit (PICU) admission. sPLA2 levels were significantly higher in those with acute illness <10 days versus convalescent disease ≥10 days (540 ± 510 vs. 2 ± 1, P = 0.04). Thus, sPLA2 levels correlated with COVID-19 severity and acute MIS-C in children, implicating a role in inflammasome activation and disease pathogenesis. sPLA2 may be a useful biomarker to stratify risk and guide patient management for children with acute COVID-19 and MIS-C. Therapeutic compounds targeting sPLA2 and inflammasome activation warrant consideration.  相似文献   
52.
The study of prokaryotic life in high temperature environments viz., geothermal areas, hot, acidic geysers and undersea hydrothermal vents has revealed the existence of thermophiles (or hyperthermophiles). These microorganisms possess various stress adaptation mechanisms which enable them to bypass multiple physical and chemical barriers for survival. The discovery of radiation resistant thermophile Deinococcus geothermalis has given new insights into the field of radiation microbiology. The ability of radiation resistant thermophiles to deal with the lethal effects of ionizing radiations like DNA damage, oxidative bursts and protein damage has made them a model system for exobiology and interplanetary transmission of life. They might be an antiquity of historical transport process that brought microbial life on Earth. These radiation resistant thermophiles are resistant to desiccation as well and maintain their homeostasis by advance DNA repair mechanisms, reactive oxygen species (ROS) detoxification system and accumulation of compatible solutes. Moreover, engineered radioresistant thermophilic strains are the best candidate for bioremediation of radionuclide waste while the extremolytes produced by these organisms may have predicted therapeutic uses. So, the present article delineate a picture of radiation resistance thermophiles, their adaptive mechanisms to evade stress viz., radiation and desiccation, their present applications along with new horizons in near future.  相似文献   
53.

A core-fucose-specific lectin, CSL from Cephalosporium curvulum, has been reported earlier. Here we assign the role for CSL and another lectin AOL, from pathogenic fungus Aspergillus oryzae, in causing mycotic keratitis. CSL and AOL show strong binding to immortalized and primary human corneal epithelial cells (HCECs) which are inhibited by asialofetuin, confirming their glycan-mediated binding. CSL and AOL showed increase in viability at lower concentrations (0.07 µg/ml) whereas at higher concentrations (0.15 µg/ml and 0.30 µg/ml), have inhibitory effect on immortalized HCECs. Lectin-mediated effect was comparable with the effect induced by the Colony Forming Units (CFUs) of C. curvulum and A. oryzae. CFUs induced more than 1.5-fold increase in HCECs proliferation. Both lectins and fungal CFUs induce secretion of proinflammatory cytokines IL6 and IL8 implicated in ocular diseases. This was supported by upregulation of TLR2 and 4 by lectins as revealed by flow cytometry and RT-PCR. CSL and AOL mediate host–pathogen interactions leading to mycotic keratitis. The mechanism of pathogenesis is possibly initiated through surface binding of mycelia through the lectins to TLR2/4 followed by upregulation of proinflammatory cytokines IL6, IL8 and TLR2 and 4. Understanding the mechanism of pathogenesis is of clinical significance in designing and developing therapeutic strategy to control the infection.

  相似文献   
54.
The nitrogen fixing aquatic pteridophyte Azolla is used as biofertilizer for rice paddy. It is also used as poultry and cattle feed due to high protein content. However, its mass cultivation and exploitation is constrained due to the abiotic stress conditions it is exposed to. The system is interesting due to the presence of symbiotic nitrogen fixing cyanobacteria and its interaction with the carbon fixing host. Therefore these interactions have to be studied at the molecular level using advanced techniques. Proteomics is a technique which can be employed to reveal the mechanism of cross talk between the host and its symbiont as well as its response to abiotc stress. The primary step that contributes to successful proteomic analysis is standardization of sound protocols for protein extraction and sufficient yield to initiate proteomic studies using 2-dimensional electrophoresis. However, reports are not available on the protein extraction procedures in Azolla. Therefore in the present study we attempted to optimize protein extraction protocol in the whole plant, roots and the chloroplast of Azolla microphylla using phenol extraction, TCA-acetone and phosphate buffer methods. Our studies showed the efficacy of phenol extraction method in terms of maximum yield and resolution of proteins in Azolla.  相似文献   
55.
Although numerous studies suggest that religious involvement is associated with better health and longer life expectancies, it is unclear whether these general patterns extend to cellular aging. The mechanisms linking indicators of religious involvement with indicators of cellular aging are also undefined. We employed longitudinal data from the 2004 and 2008 Health and Retirement Study, a national probability sample of Americans aged 50 and older, to test whether average telomere length varied according to level of religious attendance. We also tested several potential mechanisms. Our results showed that respondents who attended religious services more frequently in 2004 also exhibited fewer stressful events, lower rates of smoking, fewer symptoms of depression, and lower levels of C-reactive protein in 2008. Respondents who increased their level of attendance from 2004 to 2008 also exhibited lower rates of smoking in 2008. Although religious attendance was not directly associated with telomere length, our mediation analyses revealed significant indirect effects through depression and smoking, but not stressful events or C-reactive protein. We conclude that religious attendance may promote telomere length indirectly by reducing symptoms of depression and the risk of smoking. There was no evidence to support stressful events or C-reactive protein as mechanisms of religious attendance.  相似文献   
56.
57.
Large proteins are usually expressed in a eukaryotic system while smaller ones are expressed in prokaryotic systems. For proteins that require glycosylation, mammalian cells, fungi or the baculovirus system is chosen. The least expensive, easiest and quickest expression of proteins can be carried out in Escherichia coli. However, this bacterium cannot express very large proteins. Also, for S–S rich proteins, and proteins that require post-translational modifications, E. coli is not the system of choice. The two most utilized yeasts are Saccharomyces cerevisiae and Pichia pastoris. Yeasts can produce high yields of proteins at low cost, proteins larger than 50 kD can be produced, signal sequences can be removed, and glycosylation can be carried out. The baculoviral system can carry out more complex post-translational modifications of proteins. The most popular system for producing recombinant mammalian glycosylated proteins is that of mammalian cells. Genetically modified animals secrete recombinant proteins in their milk, blood or urine. Similarly, transgenic plants such as Arabidopsis thaliana and others can generate many recombinant proteins.  相似文献   
58.
A controlled and up-scalable route for the biosynthesis of silver nanopartilces (NPs) mediated by fungal proteins of Coriolus versicolor has been undertaken for the first time. The fungus when challenged with silver nitrate solution accumulated silver NPs on its surface in 72h which could be reduced to 1h by tailoring the reaction conditions. Under alkaline conditions, the reaction was much faster and could easily proceed at room temperature even without stirring. The resulting Ag NPs displayed controllable structural and optical properties depending on the experimental parameters such as pH and reaction temperatures. The average size, morphology, and structure of particles were determined by AFM, TEM, XRD and UV/Visible absorption spectrophotometry. Fourier transform infrared study disclosed that the amino groups were bound to the particles, which was accountable for the stability of NPs. It further confirmed the presence of protein as the stabilizing and capping agent surrounding the silver NPs. Experiments were conducted both with, media in which fungus was initially harvested and that of pristine fungal mycelium alone. Under normal conditions, in the case of media extracellular synthesis took place whereby other than the fungal proteins, glucose was also responsible for the reduction. In the case of fungal mycelium, the intracellular formation of Ag NPs, could be tailored to give both intracellular and extracellular Ag NPs under alkaline conditions whereby the surface S-H groups of the fungus played a major role.  相似文献   
59.
The larvicidal effect of the crude carbon tetrachloride, methanol and petroleum ether leaf extracts of a widely grown medicinal plant, Ocimum basilicum, against Anopheles stephensi and Culex quinquefasciatus was evaluated. Petroleum ether extract was found to be the most effective against the larvae of both mosquitoes, with LC50 values of 8.29, 4.57; 87.68, 47.25 ppm and LC90 values of 10.06, 6.06; 129.32, 65.58 ppm against A. stephensi and C. quinquefasciatus being observed after 24 and 48 h of treatment, respectively. The efficacy of petroleum ether was followed by that of the carbon tetrachloride and methanol extracts, which had LC50 values of 268.61, 143.85; 446.61, 384.84 ppm and LC90 values of 641.23, 507.80; 923.60, 887.00 ppm against A. stephensi after 24 and 48 h, respectively, and LC50 values of 24.14, 17.02; 63.48, 53.77 ppm and LC90 values of 295.38, 204.23; 689.71, 388.87 ppm against C. quinquefasciatus after 24 and 48 h of treatment, respectively. These extracts are highly toxic against mosquito larvae from a range of species; therefore, they may be useful for the management of mosquito larvae to control vector borne diseases.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号