首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   412篇
  免费   26篇
  438篇
  2023年   1篇
  2022年   9篇
  2021年   10篇
  2020年   9篇
  2019年   2篇
  2018年   15篇
  2017年   11篇
  2016年   21篇
  2015年   10篇
  2014年   29篇
  2013年   46篇
  2012年   25篇
  2011年   48篇
  2010年   21篇
  2009年   21篇
  2008年   27篇
  2007年   38篇
  2006年   22篇
  2005年   19篇
  2004年   16篇
  2003年   14篇
  2002年   7篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1991年   2篇
  1990年   1篇
  1980年   1篇
排序方式: 共有438条查询结果,搜索用时 15 毫秒
31.
The study of prokaryotic life in high temperature environments viz., geothermal areas, hot, acidic geysers and undersea hydrothermal vents has revealed the existence of thermophiles (or hyperthermophiles). These microorganisms possess various stress adaptation mechanisms which enable them to bypass multiple physical and chemical barriers for survival. The discovery of radiation resistant thermophile Deinococcus geothermalis has given new insights into the field of radiation microbiology. The ability of radiation resistant thermophiles to deal with the lethal effects of ionizing radiations like DNA damage, oxidative bursts and protein damage has made them a model system for exobiology and interplanetary transmission of life. They might be an antiquity of historical transport process that brought microbial life on Earth. These radiation resistant thermophiles are resistant to desiccation as well and maintain their homeostasis by advance DNA repair mechanisms, reactive oxygen species (ROS) detoxification system and accumulation of compatible solutes. Moreover, engineered radioresistant thermophilic strains are the best candidate for bioremediation of radionuclide waste while the extremolytes produced by these organisms may have predicted therapeutic uses. So, the present article delineate a picture of radiation resistance thermophiles, their adaptive mechanisms to evade stress viz., radiation and desiccation, their present applications along with new horizons in near future.  相似文献   
32.
The nitrogen fixing aquatic pteridophyte Azolla is used as biofertilizer for rice paddy. It is also used as poultry and cattle feed due to high protein content. However, its mass cultivation and exploitation is constrained due to the abiotic stress conditions it is exposed to. The system is interesting due to the presence of symbiotic nitrogen fixing cyanobacteria and its interaction with the carbon fixing host. Therefore these interactions have to be studied at the molecular level using advanced techniques. Proteomics is a technique which can be employed to reveal the mechanism of cross talk between the host and its symbiont as well as its response to abiotc stress. The primary step that contributes to successful proteomic analysis is standardization of sound protocols for protein extraction and sufficient yield to initiate proteomic studies using 2-dimensional electrophoresis. However, reports are not available on the protein extraction procedures in Azolla. Therefore in the present study we attempted to optimize protein extraction protocol in the whole plant, roots and the chloroplast of Azolla microphylla using phenol extraction, TCA-acetone and phosphate buffer methods. Our studies showed the efficacy of phenol extraction method in terms of maximum yield and resolution of proteins in Azolla.  相似文献   
33.
Although numerous studies suggest that religious involvement is associated with better health and longer life expectancies, it is unclear whether these general patterns extend to cellular aging. The mechanisms linking indicators of religious involvement with indicators of cellular aging are also undefined. We employed longitudinal data from the 2004 and 2008 Health and Retirement Study, a national probability sample of Americans aged 50 and older, to test whether average telomere length varied according to level of religious attendance. We also tested several potential mechanisms. Our results showed that respondents who attended religious services more frequently in 2004 also exhibited fewer stressful events, lower rates of smoking, fewer symptoms of depression, and lower levels of C-reactive protein in 2008. Respondents who increased their level of attendance from 2004 to 2008 also exhibited lower rates of smoking in 2008. Although religious attendance was not directly associated with telomere length, our mediation analyses revealed significant indirect effects through depression and smoking, but not stressful events or C-reactive protein. We conclude that religious attendance may promote telomere length indirectly by reducing symptoms of depression and the risk of smoking. There was no evidence to support stressful events or C-reactive protein as mechanisms of religious attendance.  相似文献   
34.
A controlled and up-scalable route for the biosynthesis of silver nanopartilces (NPs) mediated by fungal proteins of Coriolus versicolor has been undertaken for the first time. The fungus when challenged with silver nitrate solution accumulated silver NPs on its surface in 72h which could be reduced to 1h by tailoring the reaction conditions. Under alkaline conditions, the reaction was much faster and could easily proceed at room temperature even without stirring. The resulting Ag NPs displayed controllable structural and optical properties depending on the experimental parameters such as pH and reaction temperatures. The average size, morphology, and structure of particles were determined by AFM, TEM, XRD and UV/Visible absorption spectrophotometry. Fourier transform infrared study disclosed that the amino groups were bound to the particles, which was accountable for the stability of NPs. It further confirmed the presence of protein as the stabilizing and capping agent surrounding the silver NPs. Experiments were conducted both with, media in which fungus was initially harvested and that of pristine fungal mycelium alone. Under normal conditions, in the case of media extracellular synthesis took place whereby other than the fungal proteins, glucose was also responsible for the reduction. In the case of fungal mycelium, the intracellular formation of Ag NPs, could be tailored to give both intracellular and extracellular Ag NPs under alkaline conditions whereby the surface S-H groups of the fungus played a major role.  相似文献   
35.
Aim European and North American studies have suggested that nitrogen (N) depositions reduce plant diversity and increase primary productivity due to changes in plant traits. To predict the vegetation response to future global change, experimental validations from other regions are widely needed. We assessed the effects of N treatment by urea fertilization on the diversity and biomass of the herbaceous plant traits (HPTs) in a dry tropical environment of India.Methods Diversity and biomass of different HPTs were determined on the basis of data collected in year 2010, from 135, 1 m × 1 m plots distributed over 15 locations. The plots were treated with urea fertilizer in different doses (Control, 60kgNha-1 yr-1 and 120kg N ha-1 yr-1) since 1st January 2007. The plots were ordinated and data were subjected to appropriate statistical analyses.Important findings Correspondence analysis (CA) suggested uniqueness of species composition due to N amendment. Species number and biomass of the trait categories varied due to N fertilization and traits. All studied trait categories (except N-fixers) yielded maximum mean species number at moderate level of N fertilization. Different levels of N fertilization exhibited different species diversity–primary productivity (D-P) relationships. Further, study showed reduction in plant diversity due to increase in biomass at high rates of N addition.Conclusions Tall, erect, non N-fixers, annuals, grasses HPTs were favoured by N enrichment. N dose above 60kg enhanced the biomass of fast growing, erect, annuals, non N-fixers, nitrophilic HPTs. The changes in traits with N addition, especially the increase in annuals and grasses and decrease in typically N-rich N-fixers, have implications for sustainable cattle production.  相似文献   
36.
Secondary metabolites have been found to have interesting applications over and above their well-known medical uses, e.g., as antimicrobials, etc. These alternative applications include antitumor, cholesterol-lowering, immunosuppressant, antiprotozoal, antihelminth, antiviral and anti-ageing activities. Polyene antibiotics, such as amphotericin B, are of use as antiprion agents, antitumor drugs and against leishmaniasis. Other microbial natural products that show antibiotic activity are used against cancer e.g., doxorubicin, neomycin, β-lactams, bleomycin and rapamycin. Macrolide antibiotics, such as erythromycin, clarithromycin and azithromycin, improve pulmonary function in patients suffering from panbion cholitis. Pigments like prodigiosin and shikonin have antitumor activity, while violacein has anti-ulcer and antitumor activity and also acts as an antiprotozoal agent. Statins, in addition to lowering cholesterol and LDL levels, also decrease elevated C-reactive protein (CRP) levels independent of their cholesterol effects. Immunosppressants have many alternative effects: (i) Cyclosporin is proving useful in treatment of inflammatory disease such as asthma and muscular dystrophy. (ii) Rapamycin is extremely useful in preventing restenosis of stents grafted in balloon angioplasty. (iii) Tacrolimus and ascomycin help in treating inflammatory skin disease such as allergic contact dermatitis and psoriasis. Artemisinin, an antimalarial agent, is also showing antitumor activity. Other natural products, including those from plants (betulinic acid and shikonin), animals (bryostatins) and microbes (squalestatin and sophorolipids) have a multiplicity of potentially useful actions. Unexpected functions of known secondary metabolites are continuously being unraveled, and are fulfilling some of the needs of present day medicine and show great promise for the future.  相似文献   
37.
Triglyceride-rich lipoproteins (TRLs) are circulating reservoirs of fatty acids used as vital energy sources for peripheral tissues. Lipoprotein lipase (LPL) is a predominant enzyme mediating triglyceride (TG) lipolysis and TRL clearance to provide fatty acids to tissues in animals. Physiological and human genetic evidence support a primary role for LPL in hydrolyzing TRL TGs. We hypothesized that endothelial lipase (EL), another extracellular lipase that primarily hydrolyzes lipoprotein phospholipids may also contribute to TRL metabolism. To explore this, we studied the impact of genetic EL loss-of-function on TRL metabolism in humans and mice. Humans carrying a loss-of-function missense variant in LIPG, p.Asn396Ser (rs77960347), demonstrated elevated plasma TGs and elevated phospholipids in TRLs, among other lipoprotein classes. Mice with germline EL deficiency challenged with excess dietary TG through refeeding or a high-fat diet exhibited elevated TGs, delayed dietary TRL clearance, and impaired TRL TG lipolysis in vivo that was rescued by EL reconstitution in the liver. Lipidomic analyses of postprandial plasma from high-fat fed Lipg-/- mice demonstrated accumulation of phospholipids and TGs harboring long-chain polyunsaturated fatty acids (PUFAs), known substrates for EL lipolysis. In vitro and in vivo, EL and LPL together promoted greater TG lipolysis than either extracellular lipase alone. Our data positions EL as a key collaborator of LPL to mediate efficient lipolysis of TRLs in humans and mice.  相似文献   
38.
In the present work, we examined the correlation between 2,2,2-trifluoroethanol (TFE)-induced conformational transitions of human carbonic anhydrase II (HCAII) and its aggregation propensity. Circular dichroism data indicates that protein undergoes a transition from β-sheet to α-helix on addition of TFE. The protein was found to aggregate maximally at moderate concentration of TFE at which it exists somewhere between β-sheet and α-helix, probably in extended non-native β-sheet conformation. Thioflavin-T (ThT) and Congo-Red (CR) assays along with fluorescence microscopy and transmission electron microscopy (TEM) data suggest that the protein aggregates induced by TFE possess amyloid-like features. Anilino-8-naphthalene sulfonate (ANS) binding studies reveal that the exposure of hydrophobic surface(s) was maximum in intermediate conformation. Our study suggests that the exposed hydrophobic surface and/or the disruption of the structural features protecting a β-sheet protein might be the major reason(s) for the high aggregation propensity of non-native intermediate conformation of HCAII.  相似文献   
39.
Inhibition of caspase-6 is a potential therapeutic strategy for some neurodegenerative diseases, but it has been difficult to develop selective inhibitors against caspases. We report the discovery and characterization of a potent inhibitor of caspase-6 that acts by an uncompetitive binding mode that is an unprecedented mechanism of inhibition against this target class. Biochemical assays demonstrate that, while exquisitely selective for caspase-6 over caspase-3 and -7, the compound’s inhibitory activity is also dependent on the amino acid sequence and P1’ character of the peptide substrate. The crystal structure of the ternary complex of caspase-6, substrate-mimetic and an 11 nM inhibitor reveals the molecular basis of inhibition. The general strategy to develop uncompetitive inhibitors together with the unique mechanism described herein provides a rationale for engineering caspase selectivity.  相似文献   
40.
SN1-type methylating agents generate O6-methyl guanine (O6-meG), which is a potently mutagenic, toxic, and recombinogenic DNA adduct. Recognition of O6-meG:T mismatches by mismatch repair (MMR) causes sister chromatid exchanges, which are representative of homologous recombination (HR) events. Although the MMR-dependent mutagenicity and toxicity caused by O6-meG has been studied, the mechanisms of recombination induced by O6-meG are poorly understood. To explore the HR and MMR genetic interactions in mammals, we used the Rad51d and Mlh1 mouse models. Ablation of Mlh1 did not appreciably influence the developmental phenotypes conferred by the absence of Rad51d. Mouse embryonic fibroblasts (MEFs) deficient in Rad51d can only proliferate in p53-deficient background. Therefore, Rad51d?/?Mlh1?/? Trp53?/? MEFs with a combined deficiency of HR and MMR were generated and comparisons between MLH1 and RAD51D status were made. To our knowledge, these MEFs are the first mammalian model system for combined HR and MMR defects. Rad51d-deficient MEFs were 5.3-fold sensitive to N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) compared to the Rad51d-proficient MEFs. A pronounced G2/M arrest in Rad51d-deficient cells was accompanied by an accumulation of γ-H2AX and apoptosis. Mlh1-deficient MEFs were resistant to MNNG and showed no G2/M arrest or apoptosis at the doses used. Importantly, loss of Mlh1 alleviated sensitivity of Rad51d-deficient cells to MNNG, in addition to reducing γ-H2AX, G2/M arrest and apoptosis. Collectively, the data support the hypothesis that MMR-dependent sensitization of HR-deficient cells is specific for O6-meG and suggest that HR resolves DNA intermediates created by MMR recognition of O6-meG:T. This study provides insight into recombinogenic mechanisms of carcinogenesis and chemotherapy resulting from O6-meG adducts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号