首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   412篇
  免费   26篇
  438篇
  2023年   1篇
  2022年   9篇
  2021年   10篇
  2020年   9篇
  2019年   2篇
  2018年   15篇
  2017年   11篇
  2016年   21篇
  2015年   10篇
  2014年   29篇
  2013年   46篇
  2012年   25篇
  2011年   48篇
  2010年   21篇
  2009年   21篇
  2008年   27篇
  2007年   38篇
  2006年   22篇
  2005年   19篇
  2004年   16篇
  2003年   14篇
  2002年   7篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1991年   2篇
  1990年   1篇
  1980年   1篇
排序方式: 共有438条查询结果,搜索用时 0 毫秒
21.
22.
Plants use various mechanisms to cope with drought constraints at morphological, physiological, and biochemical level by means of different adaptive mechanisms. All organisms use a network of signal transduction pathways to control their metabolism and to adapt to the environment. Among these pathways, calcium (Ca2+) ions play an important role as a universal second messenger. Calcium has unique properties and universal ability to transmit diverse signals that trigger primary physiological actions in the cell in response to hormones, pathogens, and stress factors. Calcium plays a fundamental role in regulating the polar growth of cells and tissues and participates in plant adaptation to various stress factors. This study was conducted to examine the role of Ca2+ in ameliorating the adverse effect of drought stress responses in two contrasting wheat genotypes, HD 2733 (drought sensitive) and HD 2987 (drought tolerant), differing in their drought tolerance. The plants were treated with mannitol or Hoagland solution and then supplemented with CaCl2 (10 mM). Measurements of seed germination, shoot growth, and chlorophyll content showed that calcium treatment increased all these factors in tolerant genotype (HD 2987) under induced stress condition. Drought stress reduced relative water content, osmolyte, and soluble sugar accumulation in both the genotypes, but CaCl2 supplementation increased all the components under stress condition in HD 2987 as compared to HD 2733. The oxidative damage caused by induced stress was lower in HD 2987 compared to HD 2733 genotypes as assessed by their higher photosynthetic capacity and lower electrolyte leakage, malondialdehyde (MDA) content as well as H2O2 accumulation. Less accumulation of superoxide and H2O2 was also observed in HD 2987 genotype after CaCl2 supplementation combined with mannitol treatment. In addition, the enhanced accumulation of calcium in the HD 2987 genotype is correlated with the higher activities of antioxidant enzymes than HD 2733 genotype under similar stress conditions. Our findings provide evidence of the protective role of exogenous calcium in conferring better tolerance against mannitol-induced drought stress in wheat genotypes, which could be useful as genetic stock to develop wheat tolerant varieties in breeding programs.  相似文献   
23.
Centella asiatica (L.) Urban is a highly considered medicinal plant owing to its secondary metabolites asiaticoside, madecassoside, asiatic acid, and madecassic acid. The asiaticoside, one of the most important constituents of the plant, is a triterpenoid saponin having memory enhancement property. Given its medicinal properties, we isolated and characterized endophytic fungi from this plant with the aim to screen these microorganisms for asiaticoside production. In total, we isolated 13 endophytic fungi from the leaves of the plant, out of which one of the isolates produced asiaticoside. This asiaticoside producing isolate was identified as Colletotrichum gloeosporioides by internal transcribed spacer-based rDNA sequencing. The presence of asiaticoside in ethyl acetate extract of C. gloeosporioides was confirmed by LC–MS. The production of asiaticoside measured in relation to incubation time and subculture generation revealed presence of 62.29?±?3.36 µg/100 mL of asiaticoside by C. gloeosporioides on the 15th day in first subculture generation followed by a decrease in subsequent generations. A similar trend was also shown by yield and growth curve of C. gloeosporioides. The asiaticoside production and yield were found to be positively correlated. This paper reported the production of asiaticoside by an endophytic fungus C. gloeosporioides for the first time. The present findings definitely provide an impetus to the production of asiaticoside by utilizing the endophytic source.

Graphical Abstract

Chemical compound studied in this article: Asiaticoside (PubChemCID: 108062)
  相似文献   
24.
25.
26.
Chronic immune activation that persists despite anti-retroviral therapy (ART) is the strongest predictor of disease progression in HIV infection. Monocyte/macrophages in HIV-infected individuals are known to spontaneously secrete cytokines, although neither the mechanism nor the molecules involved are known. Here we show that overexpression of the newly described co-stimulatory molecule, PD1 homologue (PD-1H) in human monocyte/macrophages is sufficient to induce spontaneous secretion of multiple cytokines. The process requires signaling via PD-1H as cytokine secretion could be abrogated by deletion of the cytoplasmic domain. Such overexpression of PD-1H, associated with spontaneous cytokine expression is seen in monocytes from chronically HIV-infected individuals and this correlates with immune activation and CD4 depletion, but not viral load. Moreover, antigen presentation by PD-1H-overexpressing monocytes results in enhanced cytokine secretion by HIV-specific T cells. These results suggest that PD-1H might play a crucial role in modulating immune activation and immune response in HIV infection.  相似文献   
27.
The human oral metagenomic DNA cloned into plasmid pUC19 was used to construct a DNA library in Escherichia coli. Functional screening of 40,000 metagenomic clones led to identification of a clone LIP2 that exhibited halo on tributyrin agar plate. Sequence analysis of LIP2 insert DNA revealed a 939 bp ORF (omlip1) which showed homology to lipase 1 of Acinetobacter junii SH205. The omlip1 ORF was cloned and expressed in E. coli BL21 (DE3) using pET expression system. The recombinant enzyme was purified to homogeneity and the biochemical properties were studied. The purified OMLip1 hydrolyzed p-nitrophenyl esters and triacylglycerol esters of medium and long chain fatty acids, indicating the enzyme is a true lipase. The purified protein exhibited a pH and temperature optima of 7 and 37 °C respectively. The lipase was found to be stable at pH range of 6–7 and at temperatures lower than 40 °C. Importantly, the enzyme activity was unaltered, by the presence or absence of many divalent cations. The metal ion insensitivity of OMLip1offers its potential use in industrial processes.  相似文献   
28.
The industrially important species of corynebacteria viz. Corynebacterium acetoacidophilum appear to be alternative hosts for recombinant protein production; despite many efforts, a strong promoter-based system in corynebacteria has not been established so far. Described here is a T7 promoter-based expression system which was functional in both gram-positive C. acetoacidophilum and gram-negative Escherichia coli in an external inducer independent manner. This is the very first report of a T7 expression system for Corynebacterium sp. Also, it is a useful addition in the existing T7 expression systems of E. coli.  相似文献   
29.
Large proteins are usually expressed in a eukaryotic system while smaller ones are expressed in prokaryotic systems. For proteins that require glycosylation, mammalian cells, fungi or the baculovirus system is chosen. The least expensive, easiest and quickest expression of proteins can be carried out in Escherichia coli. However, this bacterium cannot express very large proteins. Also, for S–S rich proteins, and proteins that require post-translational modifications, E. coli is not the system of choice. The two most utilized yeasts are Saccharomyces cerevisiae and Pichia pastoris. Yeasts can produce high yields of proteins at low cost, proteins larger than 50 kD can be produced, signal sequences can be removed, and glycosylation can be carried out. The baculoviral system can carry out more complex post-translational modifications of proteins. The most popular system for producing recombinant mammalian glycosylated proteins is that of mammalian cells. Genetically modified animals secrete recombinant proteins in their milk, blood or urine. Similarly, transgenic plants such as Arabidopsis thaliana and others can generate many recombinant proteins.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号