首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   412篇
  免费   26篇
  2023年   1篇
  2022年   9篇
  2021年   10篇
  2020年   9篇
  2019年   2篇
  2018年   15篇
  2017年   11篇
  2016年   21篇
  2015年   10篇
  2014年   29篇
  2013年   46篇
  2012年   25篇
  2011年   48篇
  2010年   21篇
  2009年   21篇
  2008年   27篇
  2007年   38篇
  2006年   22篇
  2005年   19篇
  2004年   16篇
  2003年   14篇
  2002年   7篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1991年   2篇
  1990年   1篇
  1980年   1篇
排序方式: 共有438条查询结果,搜索用时 15 毫秒
101.
Interaction of antibodies to ganglioside GM1 with Neuro2a cells was studied to investigate the role of GM1 in cell signaling. Binding of anti-GM1 to Neuro2a cells induced the formation of 3H-inositol phosphates (3H-IPs) and elevated the intracellular Ca2+ concentration [Ca2+]i. The rise in [Ca2+]i was due to the influx of Ca2+ from the extracellular medium and release from intracellular Ca2+ pools. The Ca2+ influx pathway did not allow the permeation of Na+ or K+. The influx was inhibited by amiloride, a specific blocker of T-type Ca2+ channels, whereas nifedipine and diltiazem, blockers of L-type Ca2+ channels, did not have any effect. Thus, anti-GM1 appears to activate a T-type Ca2+ channel in Neuro2a cells. The intracellular Ca2+ release was inhibited by pretreatment of cells with neomycin sulfate, phorbol dibutyrate, and pertussis toxin (PTx), which also inhibited the 3H-IP formation in Neuro2a cells. Addition of caffeine neither elevated the [Ca2+]i nor affected the anti-GM1-induced [Ca2+]i rise. The data reveal that the binding of anti-GM1 to Neuro2a cells activates phospholipase C via a PTx-sensitive G protein, which leads to formation of IPs and release of Ca2+ from inositol trisphosphate-sensitive pool of endoplasmic reticulum. Anti-GM1 also arrested the differentiation of Neuro2a cells in culture and significantly stimulated their proliferation. This stimulatory effect of anti-GM1 on cell proliferation was blocked by amiloride but not by PTx, suggesting that the influx of Ca2+ was essentially required for cell proliferation. Our data suggest a role for GM1 in the regulation of transmembrane signaling events and cell growth.  相似文献   
102.
103.
Polyethylenimine strategies for plasmid delivery to brain-derived cells   总被引:2,自引:0,他引:2  
The introduction of effective transfection reagents has had a dramatic impact on basic scientific studies over the past decade and is methodically becoming a clinical relevant agent. An area where these agents have had little impact to date is in transfection of neuronal cells either in vivo or in vitro. The poor results, obtained with these cells, likely arise from the innate properties of the cell itself such as its post-mitotic state and its fragility to the transfection agent. In this report, we investigated the transfection efficiency of branched and linear form of polyethylenimine (PEI) for a commonly used tissue culture cell line, the human CF bronchial epithelial cell line IB3-1, rat brain-derived glial, and neuronal cell lines. In addition, the effect of reaction conditions, such as ratio of PEI/plasmid, polymer molecular weight, and shape, was addressed on the transfection effects. The results indicate that branched PEI is more effective for the brain-derived cells. It is also shown that PEI 25 is more effective for the glial cells and PEI 50-100 is more effective for the neuronal cells under the evaluation conditions.  相似文献   
104.
Previous studies in our laboratory have established ceramide kinase (CERK) as a critical mediator of eicosanoid synthesis. To date, CERK has not been well characterized in vitro. In this study, we investigated the substrate specificity of CERK using baculovirus-expressed human CERK (6 x His) and a newly designed assay based on mixed micelles of Triton X-100. The results indicate that the ability of CERK to recognize ceramide as a substrate is stereospecific. A minimum of a 12 carbon acyl chain was required for normal CERK activity, and the 4-5 trans double bond was important for substrate recognition. A significant discrimination by CERK was not observed between ceramides with long saturated and long unsaturated fatty acyl chains. Methylation of the primary hydroxyl group resulted in a loss of activity, confirming that CERK produces ceramide-1-phosphate versus ceramide-3-phosphate. In addition, methylation of the secondary hydroxyl group drastically decreased the phosphorylation by CERK. These results also indicated that the free hydrogen of the secondary amide group is critical for substrate recognition. Lastly, the sphingoid chain was also required for substrate recognition by CERK. Together, these results indicate a very high specificity for substrate recognition by CERK, explaining the use of ceramide and not sphingosine or diacylglycerol as substrates.  相似文献   
105.
1. Extracellular ATP is recognized as a peripheral modulator of pain. Activation of ionotropic P2X receptors in sensory neurons has been implicated in induction of pain, whereas metabotropic P2Y receptors in potentiation of pain induced by chemical or physical stimuli via capsaicin sensitive TRPV1 channel. Here we report that P2Y2 receptor activation by ATP can activate the TRPV1 channel in absence of any other stimuli. 2. ATP-induced Ca2+ signaling was studied in Neuro2a cells. ATP evoked release of intracellular Ca2+ from ER and Ca2+ influx through a fast inactivating channel. The Ca2+ response was induced by P2Y receptor agonists in the order of potency ATP>or=UTP>or=ATPgammaS>ADP and was inhibited by suramin and PPADS. The P2X receptor agonist alpha beta methyl ATP was ineffective. 3. The Ca2+ influx was blocked by ruthenium red, an inhibitor of TRPV1 channel. Capsaicin, the most potent activator of the TRPV1 channel, evoked a fast inactivating Ca2+ transient suggesting the presence of endogenous TRPV1 channels in Neuro2a cells. NMS and PDBu, repressors of IP3 formation, drastically inhibited both the components of Ca2+ response. 4. Our data show co-activation of the P2Y2 receptor and capsaicin sensitive TRPV1 channel by ATP. Such functional interaction between endogenous P2Y2 receptor and TRPV1 channels could explain the ATP-induced pain.  相似文献   
106.
107.
The ability of a cationic lipid to deliver plasmid DNA (pDNA) in presence of the neurotoxic fragment of amyloid -peptide was evaluated. Pre-treatment of cells with AP (25–35) peptide resulted in a modest increase in transgene expression. When AP (25–35) peptide was mixed with the pDNA/liposome complex and used, the complexes lost their ability to transfect. However, the reverse sequenced AP (35–25) peptide demonstrated no significant differences in transgene expression in pre-treated cells, and in cells where AP (35–25) peptide was mixed with pDNA/liposome complexes and transfected. The amount of pDNA delivered to the cells was decreased in presence of AP (25–35) as measured with flow cytometry using fluorescently labeled liposomes. The decreased endocytosis may be due to their rod-like structure formation as demonstrated by electron microscopy and atomic force microscopy (AFM). These results demonstrate that AP (25–35) peptide may interfere with gene delivery with cationic systems.  相似文献   
108.
109.
110.
COVID-19 pandemic has caused severe disruption of global health and devastated the socio-economic conditions all over the world. The disease is caused by SARS-CoV-2 virus that belongs to the family of Coronaviruses which are known to cause a wide spectrum of diseases both in humans and animals. One of the characteristic features of the SARS-CoV-2 virus is the high reproductive rate (R0) that results in high transmissibility of the virus among humans. Vaccines are the best option to prevent and control this disease. Though, the traditional intramuscular (IM) route of vaccine administration is one of the effective methods for induction of antibody response, a needle-free self-administrative intradermal (ID) immunization will be easier for SARS-CoV-2 infection containment, as vaccine administration method will limit human contacts. Here, we have assessed the humoral and cellular responses of a RBD-based peptide immunogen when administered intradermally in BALB/c mice and side-by-side compared with the intramuscular immunization route. The results demonstrate that ID vaccination is well tolerated and triggered a significant magnitude of humoral antibody responses as similar to IM vaccination. Additionally, the ID immunization resulted in higher production of IFN-γ and IL-2 suggesting superior cellular response as compared to IM route. Overall, our data indicates immunization through ID route provides a promising alternative approach for the development of self-administrative SARS-CoV-2 vaccine candidates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号