首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   400篇
  免费   25篇
  2023年   1篇
  2022年   7篇
  2021年   9篇
  2020年   9篇
  2019年   2篇
  2018年   15篇
  2017年   9篇
  2016年   21篇
  2015年   9篇
  2014年   27篇
  2013年   46篇
  2012年   25篇
  2011年   47篇
  2010年   21篇
  2009年   21篇
  2008年   27篇
  2007年   37篇
  2006年   22篇
  2005年   19篇
  2004年   16篇
  2003年   14篇
  2002年   7篇
  2001年   3篇
  2000年   2篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1990年   1篇
排序方式: 共有425条查询结果,搜索用时 15 毫秒
151.
Current DNA isolation methods are limited in their ability to obtain quality and/or quantity DNA from plants, such asEmblica officinalis, Terminalia belerica, andTerminalia chebula, which have low pH and high amounts of secondary metabolites in tissue extracts. Our modified DNA isolation method yields good-quality, high-molecular-weight DNA that is free of contaminants and colored pigments and is suitable for PCR amplification. This method is also useful for isolating DNA from dry powders.  相似文献   
152.
Bacterial P-loop GTPases belong to a family of proteins that selectively hydrolyze a small molecule guanosine tri-phosphate (GTP) to guanosine di-phosphate (GDP) and inorganic phosphate, and regulate several essential cellular activities such as cell division, chromosomal segregation and ribosomal assembly. A comparative genome sequence analysis of different mycobacterial species indicates the presence of multiple P-loop GTPases that exhibit highly conserved motifs. However, an exact function of most of these GTPases in mycobacteria remains elusive. In the present study we characterized the function of a P-loop GTPase in mycobacteria by employing an EngA homologue from Mycobacterium smegmatis, encoded by an open reading frame, designated as MSMEG_3738. Amino acid sequence alignment and phylogenetic analysis suggest that MSMEG_3738 (termed as EngA(MS)) is highly conserved in mycobacteria. Homology modeling of EngA(MS) reveals a cloverleaf structure comprising of α/β fold typical to EngA family of GTPases. Recombinant EngA(MS) purified from E. coli exhibits a GTP hydrolysis activity which is inhibited by the presence of GDP. Interestingly, the EngA(MS) protein is co-eluted with 16S and 23S ribosomal RNA during purification and exhibits association with 30S, 50S and 70S ribosomal subunits. Further studies demonstrate that GTP is essential for interaction of EngA(MS) with 50S subunit of ribosome and specifically C-terminal domains of EngA(MS) are required to facilitate this interaction. Moreover, EngA(MS) devoid of N-terminal region interacts well with 50S even in the absence of GTP, indicating a regulatory role of the N-terminal domain in EngA(MS)-50S interaction.  相似文献   
153.
Centrosomes in mammalian cells have recently been implicated in cytokinesis; however, their role in this process is poorly defined. Here, we describe a human coiled-coil protein, Cep55 (centrosome protein 55 kDa), that localizes to the mother centriole during interphase. Despite its association with gamma-TuRC anchoring proteins CG-NAP and Kendrin, Cep55 is not required for microtubule nucleation. Upon mitotic entry, centrosome dissociation of Cep55 is triggered by Erk2/Cdk1-dependent phosphorylation at S425 and S428. Furthermore, Cep55 locates to the midbody and plays a role in cytokinesis, as its depletion by siRNA results in failure of this process. S425/428 phosphorylation is required for interaction with Plk1, enabling phosphorylation of Cep55 at S436. Cells expressing phosphorylation-deficient mutant forms of Cep55 undergo cytokinesis failure. These results highlight the centrosome as a site to organize phosphorylation of Cep55, enabling it to relocate to the midbody to function in mitotic exit and cytokinesis.  相似文献   
154.
Abstract

Hepatic carcinoma (HC) is one of the most prevalent cancers, ranked as the second most common cause of cancer-related deaths worldwide. Silymarin (SYL) has been reported for its anticarcinogenic activity against various types of cancer such as prostate, breast, ovary, colon, lung, bladder and liver. Due to poor solubility and low bioavailability SYL lacks satisfactory therapeutic value thus designing a suitable and effective delivery system of SYL can led to improved therapeutic potential. The present study was aimed to develop SYL-loaded dextrose (DEX) modified bilosomes for targeted delivery to HC cells. The DEX-modified bilosomes were prepared through thin-film hydration method and optimized employing Box Behnken design. The bilosomes were evaluated for percent entrapment, drug loading, in vitro release and cytotoxicity on Hep-G2 cells. The optimized DEX-SYL-BL exhibited a particle size of 219.3?±?2.99?nm, percent entrapment of 62.32?±?4.23%, drug loading of 34.56?±?1.23% and 84.96?±?2.76% drug release respectively over a period of 24?hr. The stability of bilosomes was ascertained in simulated gastric and intestinal fluids. Cytotoxicity studies revealed greater performance of DEX-SYL-BL in terms of reduced viability in Hep-G2 cell lines when compared with pure SYL and SYL-BL. Further DEX-modified bilosomes were evaluated in vivo for their therapeutic efficacy in DEN-induced (Diethylnitrosamine) hepatic carcinoma in animal model. The DEX-SYL-BL displayed higher therapeutic potential as revealed from enhanced survival and reduced tumour burden in animals. DEX-SYL-BL also displayed significant restoration of altered oxidative markers and SGOT, SGPT levels towards normal value when compared with pure SYL.  相似文献   
155.
Chordoma is a rare primary bone malignancy that arises in the skull base, spine and sacrum and originates from remnants of the notochord. These tumors are typically resistant to conventional chemotherapy, and to date there are no FDA-approved agents to treat chordoma. The lack of in vivo models of chordoma has impeded the development of new therapies for this tumor. Primary tumor from a sacral chordoma was xenografted into NOD/SCID/IL-2R γ-null mice. The xenograft is serially transplantable and was characterized by both gene expression analysis and whole genome SNP genotyping. The NIH Chemical Genomics Center performed high-throughput screening of 2,816 compounds using two established chordoma cell lines, U-CH1 and U-CH2B. The screen yielded several compounds that showed activity and two, sunitinib and bortezomib, were tested in the xenograft. Both agents slowed the growth of the xenograft tumor. Sensitivity to an inhibitor of IκB, as well as inhibition of an NF-κB gene expression signature demonstrated the importance of NF-κB signaling for chordoma growth. This serially transplantable chordoma xenograft is thus a practical model to study chordomas and perform in vivo preclinical drug testing.  相似文献   
156.
157.
TM601 is a synthetic form of chlorotoxin, a 36-amino acid peptide derived from the venom of the Israeli scorpion, Leirius quinquestriatus, initially found to specifically bind and inhibit the migration of glioma cells in culture. Subsequent studies demonstrated specific in vitro binding to additional tumor cell lines. Recently, we demonstrated that proliferating human vascular endothelial cells are the only normal cell line tested that exhibits specific binding to TM601. Here, we identify annexin A2 as a novel binding partner for TM601 in multiple human tumor cell lines and human umbilical vein endothelial cell (HUVEC). We demonstrate that the surface binding of TM601 to the pancreatic tumor cell line Panc-1 is dependent on the expression of annexin A2. Identification of annexin A2 as a binding partner for TM601 is also consistent with the anti-angiogenic effects of TM601. Annexin A2 functions in angiogenesis by binding to tissue plasminogen activator and regulating plasminogen activation on vascular endothelial cells. We demonstrate that in HUVECs, TM601 inhibits both vascular endothelial growth factor- and basic fibroblast growth factor-induced tissue plasminogen activator activation, which is required for activation of plasminogen to plasmin. Consistent with inhibition of cell surface protease activity, TM601 also inhibits platelet-derived growth factor-C induced trans-well migration of both HUVEC and U373-MG glioma cells.  相似文献   
158.
By using the hindered tris(pyrazolyl)borate ligand TpiPr2 (hydrotris(3,5-diisopropyl-1-pyrazolyl))borate, both mono- and binuclear complexes of cobalt [TpiPr2Co](X) (X = NO3 and OBz) and [TpiPr2Co]2(μ-X)(μ-OBz) (X = OH, N3) were synthesized. The nitrato complex, [TpiPr2Co](NO3) (1), which could be converted to (2), was prepared by reaction of KTpiPr2 with hydrated Co(NO3)2 and its molecular structure was determined by X-ray crystallography. The dinuclear di(μ-hydroxo) complex, [TpiPr2Co]2(μ-OH)2 (2), which was obtained by treatment of 1 with aqueous NaOH, reacted with one equivalent of benzoic acid to give the (μ-benzoato)(μ-hydroxo) complex, [TpiPr2Co]2(μ-OH)(μ-OBz) (3). X-ray crystallography shows the presence of both hydroxy and carboxylate group as bridging ligands and both cobalt metals are in five coordination environment in 3. The μ-azido complex, [TpiPr2Co]2(μ-N3)(μ-OBz) (5), was prepared by reaction of 3 with one equivalent of aqueous sodium azide. The spectroscopic studies suggested μ-1,1-bridging nature of group in this complex. The reaction of 2 with excess amount of benzoic acid resulted in the destruction of the bimetallic core to give the mononuclear carboxylato complex, [TpiPr2 Co](OBz) (4), which was characterized by X-ray crystallography.  相似文献   
159.
Previous findings from our laboratory have demonstrated that cPLA(2)alpha is directly activated by the emerging bioactive sphingolipid, ceramide 1-phosphate (C-1-P) (1). In this study, a Triton X-100/phosphatidylcholine (PC) mixed micelle assay was utilized to determine the kinetics and specificity of this lipid-enzyme interaction. Using this assay, the addition of C-1-P induced a dramatic increase in the activity of cPLA(2)alpha (>15-fold) with a K(a) of 2.4 mol % C-1-P/Triton X-100 micelle. This activation was highly specific as the addition of other lipids had insignificant effects on cPLA(2)alpha activity. Studies using surface-dilution kinetics revealed that C-1-P had no effect on the Michaelis-Menten constant, K(m)(B), but decreased the dissociation constant (K (A)(s)) value by 87%. Thus, C-1-P not only increases the membrane affinity of cPLA(2)alpha but also may act as an allosteric activator of the enzyme. Surface plasmon resonance analysis of the C-1-P/cPLA(2)alpha interaction verified a decrease in the dissociation constant, demonstrating that cPLA(2)alpha bound PC vesicles containing C-1-P with increased affinity (5-fold) compared with PC vesicles alone. The effect on the dissociation rate of cPLA(2)alpha was also found to be lipid-specific with the exception of phosphatidylinositol 4,5-bisphosphate, which caused a modest increase in vesicle affinity (2-fold). Lastly, the binding site for C-1-P was determined to be within the C2-domain of cPLA(2)alpha, unlike phosphatidylinositol 4,5-bisphosphate. These data demonstrate a novel interaction site for C-1-P and suggest that C-1-P may function to recruit cPLA(2)alpha to intracellular membranes as well as allosterically activate the membrane-associated enzyme.  相似文献   
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号