首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   400篇
  免费   25篇
  2023年   1篇
  2022年   7篇
  2021年   9篇
  2020年   9篇
  2019年   2篇
  2018年   15篇
  2017年   9篇
  2016年   21篇
  2015年   9篇
  2014年   27篇
  2013年   46篇
  2012年   25篇
  2011年   47篇
  2010年   21篇
  2009年   21篇
  2008年   27篇
  2007年   37篇
  2006年   22篇
  2005年   19篇
  2004年   16篇
  2003年   14篇
  2002年   7篇
  2001年   3篇
  2000年   2篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1990年   1篇
排序方式: 共有425条查询结果,搜索用时 15 毫秒
131.
132.
Circulating adiponectin levels are increased by the thiazolidinedione (TZD) class of PPARgamma agonists in concert with their insulin-sensitizing effects. Two receptors for adiponectin (AdipoR1 and AdipoR2) are widely expressed in many tissues, but their physiological significance to human insulin resistance remains to be fully elucidated. We examined the expression patterns of AdipoR1 and AdipoR2 in fat and skeletal muscle of human subjects, their relationship to insulin action, and whether they are regulated by TZDs. Expression patterns of both AdipoRs were similar in subcutaneous and omental fat depots, with higher expression in adipocytes than in stromal cells and macrophages. To determine the effects of TZDs on AdipoR expression, subcutaneous fat and quadriceps muscle were biopsied in 14 insulin-resistant subjects with type 2 diabetes mellitus after 45 mg pioglitazone or placebo for 21 days. This duration of pioglitazone improved insulin's suppression of glucose production by 41% and enhanced stimulation of glucose uptake by 27% in concert with increased gene expression and plasma levels of adiponectin. Pioglitazone did not affect AdipoR expression in muscle, whole fat, or cellular adipose fractions, and receptor expression did not correlate with baseline or TZD-enhanced insulin action. In summary, both adiponectin receptors are expressed in cellular fractions of human fat, particularly adipocytes. TZD administration for sufficient duration to improve insulin action and increase adiponectin levels did not affect expression of AdipoR1 or AdipoR2. Although TZDs probably exert many of their effects via adiponectin, changes in these receptors do not appear to be necessary for their insulin-sensitizing effects.  相似文献   
133.
134.
Type 1 diabetic (T1D) patients are hyperglycemic and also show elevated blood levels of ketone bodies, particularly acetoacetate (AA) and β-hydroxybutyrate (BHB). T1D patients have a greater risk of developing endothelial dysfunction and cardiovascular disease (CVD). Supplementation with cysteine-rich milk proteins has been shown to be beneficial in improving various biomarkers of endothelial dysfunction and CVD. This study examines whether l-cysteine (LC) per se prevents monocyte adhesion to endothelial cells, a critical step in endothelial dysfunction. Human umbilical vein endothelial cells and THP-1 monocytes were pretreated with and without LC (500 μM) for 2 h and then exposed to ketones (AA or BHB, 0–4 mM) and/or high glucose (HG) (25 mM) for 24 h. This study shows that LC reduces HG and ketone-induced ROS production, ICAM-1 expression, and the adhesion of monocytes to endothelial cells. This study provides a biochemical mechanism by which milk protein supplementation can be beneficial in preventing the excess endothelial dysfunction and CVD seen in diabetic patients.  相似文献   
135.
136.

Background

The diagnosis of autism spectrum disorder (ASD) at the earliest age possible is important for initiating optimally effective intervention. In the United States the average age of diagnosis is 4 years. Identifying metabolic biomarker signatures of ASD from blood samples offers an opportunity for development of diagnostic tests for detection of ASD at an early age.

Objectives

To discover metabolic features present in plasma samples that can discriminate children with ASD from typically developing (TD) children. The ultimate goal is to identify and develop blood-based ASD biomarkers that can be validated in larger clinical trials and deployed to guide individualized therapy and treatment.

Methods

Blood plasma was obtained from children aged 4 to 6, 52 with ASD and 30 age-matched TD children. Samples were analyzed using 5 mass spectrometry-based methods designed to orthogonally measure a broad range of metabolites. Univariate, multivariate and machine learning methods were used to develop models to rank the importance of features that could distinguish ASD from TD.

Results

A set of 179 statistically significant features resulting from univariate analysis were used for multivariate modeling. Subsets of these features properly classified the ASD and TD samples in the 61-sample training set with average accuracies of 84% and 86%, and with a maximum accuracy of 81% in an independent 21-sample validation set.

Conclusions

This analysis of blood plasma metabolites resulted in the discovery of biomarkers that may be valuable in the diagnosis of young children with ASD. The results will form the basis for additional discovery and validation research for 1) determining biomarkers to develop diagnostic tests to detect ASD earlier and improve patient outcomes, 2) gaining new insight into the biochemical mechanisms of various subtypes of ASD 3) identifying biomolecular targets for new modes of therapy, and 4) providing the basis for individualized treatment recommendations.  相似文献   
137.
"Trojan horse" antibiotic albomycins are peptidyl nucleosides consisting of a highly modified 4'-thiofuranosyl cytosine moiety and a ferrichrome siderophore that are linked by a peptide bond via a serine residue. While the latter component serves to sequester iron from the environment, the seryl nucleoside portion is a potent inhibitor of bacterial seryl-tRNA synthetases, resulting in broad-spectrum antimicrobial activities of albomycin δ(2). The isolation of albomycins has revealed this biological activity is optimized only following two unusual cytosine modifications, N4-carbamoylation and N3-methylation. We identified a genetic locus (named abm) for albomycin production in Streptomyces sp. ATCC 700974. Gene deletion and complementation experiments along with bioinformatic analysis suggested 18 genes are responsible for albomycin biosynthesis and resistance, allowing us to propose a potential biosynthetic pathway for installing the novel chemical features. The gene abmI, encoding a putative methyltransferase, was functionally assigned in vitro and shown to modify the N3 of a variety of cytosine-containing nucleosides and antibiotics such as blasticidin S. Furthermore, a ΔabmI mutant was shown to produce the descarbamoyl-desmethyl albomycin analogue, supporting that the N3-methylation occurs before the N4-carbamoylation in the biosynthesis of albomycin δ(2). The combined genetic information was utilized to identify an abm-related locus (named ctj) from the draft genome of Streptomyces sp. C. Cross-complementation experiments and in vitro studies with CtjF, the AbmI homologue, suggest the production of a similar 4'-thiofuranosyl cytosine in this organism. In total, the genetic and biochemical data provide a biosynthetic template for assembling siderophore-inhibitor conjugates and modifying the albomycin scaffold to generate new derivatives.  相似文献   
138.

Background

Inconsistent results across association studies including Genome-wide association, have posed a major challenge in complex disease genetics. Of the several factors which contribute to this, phenotypic heterogeneity is a serious limitation encountered in modern medicine. On the other hand, Ayurveda, a holistic Indian traditional system of medicine, enables subgrouping of individuals into three major categories namely Vata, Pitta and Kapha, based on their physical and mental constitution, referred to as Prakriti. We hypothesised that conditioning association studies on prior risk, predictable in Ayurveda, will uncover much more variance and potentially open up more predictive health.

Objectives and Methods

Identification of genetic susceptibility markers by combining the prakriti based subgrouping of individuals with genetic analysis tools was attempted in a Rheumatoid arthritis (RA) cohort. Association of 21 markers from commonly implicated inflammatory and oxidative stress pathways was tested using a case-control approach in a total cohort comprising 325 cases and 356 controls and in the three subgroups separately. We also tested few postulates of Ayurveda on the disease characteristics in different prakriti groups using clinico-genetic data.

Results

Inflammatory genes like IL1β (C-C-C haplotype, p = 0.0005, OR = 3.09) and CD40 (rs4810485 allelic, p = 0.04, OR = 2.27) seem to be the determinants in Vata subgroup whereas oxidative stress pathway genes are observed in Pitta (SOD3 rs699473, p = 0.004, OR = 1.83; rs2536512 p = 0.005; OR = 1.88 and PON1 rs662, p = 0.04, OR = 1.53) and Kapha (SOD3 rs2536512, genotypic, p = 0.02, OR = 2.39) subgroups. Fixed effect analysis of the associated markers from CD40, SOD3 and TNFα with genotype X prakriti interaction terms suggests heterogeneity of effects within the subgroups. Further, disease characteristics such as severity was most pronounced in Vata group.

Conclusions

This exploratory study suggests discrete causal pathways for RA etiology in prakriti based subgroups, thereby, validating concepts of prakriti and personalized medicine in Ayurveda. Ayurgenomics approach holds promise for biomarker discovery in complex diseases.  相似文献   
139.
Bacterial P-loop GTPases belong to a family of proteins that selectively hydrolyze a small molecule guanosine tri-phosphate (GTP) to guanosine di-phosphate (GDP) and inorganic phosphate, and regulate several essential cellular activities such as cell division, chromosomal segregation and ribosomal assembly. A comparative genome sequence analysis of different mycobacterial species indicates the presence of multiple P-loop GTPases that exhibit highly conserved motifs. However, an exact function of most of these GTPases in mycobacteria remains elusive. In the present study we characterized the function of a P-loop GTPase in mycobacteria by employing an EngA homologue from Mycobacterium smegmatis, encoded by an open reading frame, designated as MSMEG_3738. Amino acid sequence alignment and phylogenetic analysis suggest that MSMEG_3738 (termed as EngA(MS)) is highly conserved in mycobacteria. Homology modeling of EngA(MS) reveals a cloverleaf structure comprising of α/β fold typical to EngA family of GTPases. Recombinant EngA(MS) purified from E. coli exhibits a GTP hydrolysis activity which is inhibited by the presence of GDP. Interestingly, the EngA(MS) protein is co-eluted with 16S and 23S ribosomal RNA during purification and exhibits association with 30S, 50S and 70S ribosomal subunits. Further studies demonstrate that GTP is essential for interaction of EngA(MS) with 50S subunit of ribosome and specifically C-terminal domains of EngA(MS) are required to facilitate this interaction. Moreover, EngA(MS) devoid of N-terminal region interacts well with 50S even in the absence of GTP, indicating a regulatory role of the N-terminal domain in EngA(MS)-50S interaction.  相似文献   
140.
Salmonella enterica serovar Typhimurium invades and proliferates within epithelial cells. Intracellular bacteria replicate within a membrane bound vacuole known as the Salmonella containing vacuole. However, this bacterium can also replicate efficiently in the cytosol of epithelial cells and net intracellular growth is a product of both vacuolar and cytosolic replication. Here we have used semi-quantitative single-cell analyses to investigate the contribution of each of these replicative niches to intracellular proliferation in cultured epithelial cells. We show that cytosolic replication can account for the majority of net replication even though it occurs in less than 20% of infected cells. Consequently, assays for net growth in a population of infected cells, for example by recovery of colony forming units, are not good indicators of vacuolar proliferation. We also show that the Salmonella Type III Secretion System 2, which is required for SCV biogenesis, is not required for cytosolic replication. Altogether this study illustrates the value of single cell analyses when studying intracellular pathogens.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号