首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   494篇
  免费   31篇
  525篇
  2023年   1篇
  2022年   11篇
  2021年   13篇
  2020年   9篇
  2019年   3篇
  2018年   18篇
  2017年   10篇
  2016年   22篇
  2015年   9篇
  2014年   29篇
  2013年   49篇
  2012年   32篇
  2011年   53篇
  2010年   25篇
  2009年   23篇
  2008年   35篇
  2007年   46篇
  2006年   25篇
  2005年   20篇
  2004年   19篇
  2003年   17篇
  2002年   9篇
  2001年   4篇
  2000年   3篇
  1999年   5篇
  1997年   2篇
  1996年   2篇
  1995年   4篇
  1994年   1篇
  1992年   1篇
  1989年   2篇
  1988年   5篇
  1987年   4篇
  1986年   4篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1980年   1篇
  1979年   3篇
  1978年   2篇
  1973年   1篇
排序方式: 共有525条查询结果,搜索用时 15 毫秒
41.
Potential adverse effects of excess maternal folic acid supplementation on a vegetarian population deficient in vitamin B(12) are poorly understood. We have previously shown in a rat model that maternal folic acid supplementation at marginal protein levels reduces brain omega-3 fatty acid levels in the adult offspring. We have also reported that reduced docosahexaenoic acid (DHA) levels may result in diversion of methyl groups towards DNA in the one carbon metabolic pathway ultimately resulting in DNA methylation. This study was designed to examine the effect of normal and excess folic acid in the absence and presence of vitamin B(12) deficiency on global methylation patterns in the placenta. Further, the effect of maternal omega 3 fatty acid supplementation on the above vitamin B(12) deficient diets was also examined. Our results suggest maternal folic acid supplementation in the absence of vitamin B(12) lowers plasma and placental DHA levels (p<0.05) and reduces global DNA methylation levels (p<0.05). When this group was supplemented with omega 3 fatty acids there was an increase in placental DHA levels and subsequently DNA methylation levels revert back to the levels of the control group. Our results suggest for the first time that DHA plays an important role in one carbon metabolism thereby influencing global DNA methylation in the placenta.  相似文献   
42.
43.
Ribonuclease III cleaves double-stranded (ds) structures in bacterial RNAs and participates in diverse RNA maturation and decay pathways. Essential insight on the RNase III mechanism of dsRNA cleavage has been provided by crystallographic studies of the enzyme from the hyperthermophilic bacterium, Aquifex aeolicus. However, the biochemical properties of A. aeolicus (Aa)-RNase III and the reactivity epitopes of its substrates are not known. The catalytic activity of purified recombinant Aa-RNase III exhibits a temperature optimum of ~70-85°C, with either Mg2+ or Mn2+ supporting efficient catalysis. Small hairpins based on the stem structures associated with the Aquifex 16S and 23S rRNA precursors are cleaved at sites that are consistent with production of the immediate precursors to the mature rRNAs. Substrate reactivity is independent of the distal box sequence, but is strongly dependent on the proximal box sequence. Structural studies have shown that a conserved glutamine (Q157) in the Aa-RNase III dsRNA-binding domain (dsRBD) directly interacts with a proximal box base pair. Aa-RNase III cleavage of the pre-16S substrate is blocked by the Q157A mutation, which reflects a loss of substrate binding affinity. Thus, a highly conserved dsRBD-substrate interaction plays an important role in substrate recognition by bacterial RNase III.  相似文献   
44.

Objective

To determine the prevalence of cataract surgery and factors associated with post-surgical visual outcomes in migrant Indians living in Singapore.

Research Design and Methods

We conducted a population-based study in 3,400 Indian immigrants residing in Singapore−the Singapore Indian Eye Study (SINDI). All participants underwent comprehensive medical eye examination and a standardized interview. Post-operative visual impairment (VI) was defined as best-corrected or presenting visual acuity (BCVA or PVA) of 20/60 or worse.

Results

The age- and gender-standardized prevalence of cataract surgery was 9.7% (95% confidence interval [CI]: 8.9%, 10.7%) in Singapore resident Indians. Post-operative VI defined by BCVA occurred in 10.9% eyes (87/795). The main causes of post-operative VI were diabetic retinopathy (20.7%), posterior capsular opacification (18.4%), and age-related macular degeneration (12.6%). Undercorrected refractive error doubled the prevalence of post-operative VI when PVA was used.

Conclusions

The rate of cataract surgery is about 10% in Indian residents in Singapore. Socioeconomic variables and migration had no significant impact on the prevalence of cataract surgery. Diabetic retinopathy was a major cause of post-operative VI in migrant Indians living in Singapore. Uncorrected postoperative refractive error remains an efficient way to improve vision.  相似文献   
45.
46.
47.
HSV glycoprotein K (gK) is an essential herpes protein that contributes to enhancement of eye disease. We previously reported that gK binds to signal peptide peptidase (SPP) and that depletion of SPP reduces HSV-1 infectivity in vivo. To determine the therapeutic potential of blocking gK binding to SPP on virus infectivity and pathogenicity, we mapped the gK binding site for SPP to a 15mer peptide within the amino-terminus of gK. This 15mer peptide reduced infectivity of three different virus strains in vitro as determined by plaque assay, FACS, and RT-PCR. Similarly, the 15mer peptide reduced ocular virus replication in both BALB/c and C57BL/6 mice and also reduced levels of latency and exhaustion markers in infected mice when compared with control treated mice. Addition of the gK-15mer peptide also increased the survival of infected mice when compared with control mice. These results suggest that blocking gK binding to SPP using gK peptide may have therapeutic potential in treating HSV-1-associated infection.  相似文献   
48.
49.
Existing drugs for visceral leishmaniasis (VL) are partially effective, toxic, having high cost and long term treatment. Their efficacies are also compromised due to suppression of immune function associated during the course of infection. Combination therapy including a potential and safe immunostimulant with lower doses of effective drug has proven as a significant approach which is more effective than immunotherapy or drug therapy alone. In the present study, we have used the combination of Pam3Cys (an in-built immunoadjuvant and TLR2 ligand) and miltefosine. Initially dose optimization of both the agents was carried out and after that, antileishmanial effect of their combination was evaluated. All experiments were done in BALB/c mouse model. The immunomodulatory role of Pam3Cys on the immune functions of the host receiving combination treatment was also determined using immunological and biochemical parameters viz. phagocytosis, Th1/Th2 cytokines and production of ROS, RNS and H(2)O(2). Combination group showed significant enhancement in parasitic inhibition as compared to groups receiving miltefosine and Pam3Cys separately. Enhanced production of Th1 cytokines as well as ROS, RNS and H(2)O(2) was witnessed during the study of immunological alterations. Remarkable increase in phagocytosis index was also observed. Thus, the risk of development of drug resistance against miltefosine can be resolved through using low doses of it and Pam3Cys (single-dose) in combination and also provide a promising alternative for cure of leishmaniasis, with a pronounced transformation of the host immune response.  相似文献   
50.
Inhibition of caspase-6 is a potential therapeutic strategy for some neurodegenerative diseases, but it has been difficult to develop selective inhibitors against caspases. We report the discovery and characterization of a potent inhibitor of caspase-6 that acts by an uncompetitive binding mode that is an unprecedented mechanism of inhibition against this target class. Biochemical assays demonstrate that, while exquisitely selective for caspase-6 over caspase-3 and -7, the compound’s inhibitory activity is also dependent on the amino acid sequence and P1’ character of the peptide substrate. The crystal structure of the ternary complex of caspase-6, substrate-mimetic and an 11 nM inhibitor reveals the molecular basis of inhibition. The general strategy to develop uncompetitive inhibitors together with the unique mechanism described herein provides a rationale for engineering caspase selectivity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号