首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1088篇
  免费   50篇
  国内免费   2篇
  1140篇
  2023年   10篇
  2022年   26篇
  2021年   48篇
  2020年   28篇
  2019年   15篇
  2018年   46篇
  2017年   28篇
  2016年   37篇
  2015年   31篇
  2014年   65篇
  2013年   93篇
  2012年   73篇
  2011年   75篇
  2010年   54篇
  2009年   54篇
  2008年   49篇
  2007年   55篇
  2006年   38篇
  2005年   37篇
  2004年   34篇
  2003年   28篇
  2002年   16篇
  2001年   17篇
  2000年   9篇
  1999年   15篇
  1998年   9篇
  1997年   6篇
  1996年   5篇
  1994年   3篇
  1993年   3篇
  1992年   8篇
  1991年   9篇
  1990年   9篇
  1989年   12篇
  1988年   12篇
  1987年   7篇
  1986年   4篇
  1985年   6篇
  1984年   7篇
  1983年   3篇
  1982年   8篇
  1981年   4篇
  1980年   3篇
  1975年   7篇
  1974年   5篇
  1972年   4篇
  1971年   3篇
  1970年   3篇
  1969年   3篇
  1966年   3篇
排序方式: 共有1140条查询结果,搜索用时 15 毫秒
991.
A series of indolylglyoxylamide derivatives have been synthesized and evaluated in vitro against amastigote form of Leishmania donovani. Compound 8c has been identified as the most active analog of the series with IC50 value of 5.17 μM and SI value of 31.48, and is several folds more potent than the standard drugs sodium stilbogluconate and pentamidine.  相似文献   
992.
Analogs of nantenine were docked into a modeled structure of the human 5-HT2A receptor using ICM Pro, GLIDE, and GOLD docking methods. The resultant docking scores were used to correlate with observed in vitro apparent affinity (Ke) data. The GOLD docking algorithm when used with a homology model of 5-HT2A, based on a bovine rhodopsin template and built by the program MODELLER, gives results which are most in agreement with the in vitro results. Further analysis of the docking poses among members of a C1 alkyl series of nantenine analogs, indicate that they bind to the receptor in a similar orientation, but differently than nantenine. Besides an important interaction between the protonated nitrogen of the C1 alkyl analogs and residue Asp155, we identified Ser242, Phe234, and Gly238 as key residues responsible for the affinity of these compounds for the 5-HT2A receptor. Specifically, the ability of some of these analogs to establish a H-bond with Ser242 and hydrophobic interactions with Phe234 and Gly238 appears to explain their enhanced affinity as compared to nantenine.  相似文献   
993.
Purine nucleoside phosphorylase (PNP) is an important component of the nucleotide salvage pathway in apicomplexan parasites and a potential target for drug development. The intracellular pathogen Toxoplasma gondii was therefore tested for sensitivity to immucillins, transition state analogs that exhibit high potency against PNP in the malaria parasite Plasmodium falciparum. Growth of wild-type T. gondii is unaffected by up to 10 microm immucillin-H (ImmH), but mutants lacking the (redundant) purine salvage pathway enzyme adenosine kinase are susceptible to the drug, with an IC50 of 23 nm. This effect is rescued by the reaction product hypoxanthine, but not the substrate inosine, indicating that ImmH acts via inhibition of T. gondii PNP. The primary amino acid sequence of TgPNP is >40% identical to PfPNP, and recombinant enzymes exhibit similar kinetic parameters for most substrates. Unlike the Plasmodium enzyme, however, TgPNP cannot utilize 5'-methylthio-inosine (MTI). Moreover, TgPNP is insensitive to methylthio-immucillin-H (MT-ImmH), which inhibits PfPNP with a Ki* of 2.7 nm. MTI arises through the deamination of methylthio-adenosine, a product of the polyamine biosynthetic pathway, and its further metabolism to hypoxanthine involves PfPNP in purine recycling (in addition to salvage). Remarkably, analysis of the recently completed T. gondii genome indicates that polyamine biosynthetic machinery is completely lacking in this species, obviating the need for TgPNP to metabolize MTI. Differences in purine and polyamine metabolic pathways among members of the phylum Apicomplexa and these parasites and their human hosts are likely to influence drug target selection strategies. Targeting T. gondii PNP alone is unlikely to be efficacious for treatment of toxoplasmosis.  相似文献   
994.
Non-ribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs) present in bacteria and fungi are the major multi-modular enzyme complexes which synthesize secondary metabolites like the pharmacologically important antibiotics and siderophores. Each of the multiple modules of an NRPS activates a different amino or aryl acid, followed by their condensation to synthesize a linear or cyclic natural product. The studies on NRPS domains, the knowledge of their gene cluster architecture and tailoring enzymes have helped in the in silico genetic screening of the ever-expanding sequenced microbial genomic data for the identification of novel NRPS/PKS clusters and thus deciphering novel non-ribosomal peptides (NRPs). Adenylation domain is an integral part of the NRPSs and is the substrate selecting unit for the final assembled NRP. In some cases, it also requires a small protein, the MbtH homolog, for its optimum activity. The presence of putative adenylation domain and MbtH homologs in a sequenced genome can help identify the novel secondary metabolite producers. The role of the adenylation domain in the NRPS gene clusters and its characterization as a tool for the discovery of novel cryptic NRPS gene clusters are discussed.  相似文献   
995.
Pedalium murex (Pedaliaceae), commonly called Large Caltrops, is known for its pharmacological uses in traditional medicine system. It is reported to have excellent medicinal properties that helps cure reproductive disorders, mainly impotency in men, nocturnal emissions, gonorrhea as well as leucorrhoea in women. Apart from that, it also contains remedy for urinary and gastrointestinal tract disorders. Pharmacologically, the plant has been investigated for antiulcerogenic, nephroprotective, hypolipidemic, aphrodisiac, anti-inflammatory, antidermatophytic, antioxidant, antimicrobial and insecticidal activities. The present review is a bundle of information collected from the published research articles and highlights the phytochemical and pharmacological aspects of P. murex. The information will be helpful in developing the new formulation with therapeutic and economical value in the future.  相似文献   
996.
997.
998.
Primary microcephaly (MCPH) is a rare developmental defect characterized by impaired cognitive functions, retarded neurodevelopment and reduced brain size. It is genetically heterogeneous and so far more than 17 genes associated with this disease have been identified. Primary microcephaly type 1 (MCPH1) gene encodes a protein called microcephalin, which is implicated in chromosome condensation and DNA damage induced cellular responses. It is suggested to play a role in neurogenesis and regulation of the size of the cerebral cortex. Whole exome sequencing revealed a novel, homozygous frameshift mutation (c.373_374delAA) in MCPH1 gene in exon 5 resulting in frameshift change from p.Lys125Glusfs*7. Our report presents the results of the simultaneous analysis of the trio exome data of both unaffected parents and their affected son. A homozygous frameshift variant in the MCPH1 gene was identified as a plausible candidate causal variant for the clinical phenotype in this family.  相似文献   
999.
1000.
Physiological processes of terrestrial plants regulate the land–atmosphere exchange of carbon, water, and energy, yet few studies have explored the acclimation responses of mature boreal conifer trees to climate change. Here we explored the acclimation responses of photosynthesis, respiration, and stomatal conductance to elevated temperature and/or CO2 concentration ([CO2]) in a 3‐year field experiment with mature boreal Norway spruce. We found that elevated [CO2] decreased photosynthetic carboxylation capacity (?23% at 25 °C) and increased shoot respiration (+64% at 15 °C), while warming had no significant effects. Shoot respiration, but not photosynthetic capacity, exhibited seasonal acclimation. Stomatal conductance at light saturation and a vapour pressure deficit of 1 kPa was unaffected by elevated [CO2] but significantly decreased (?27%) by warming, and the ratio of intercellular to ambient [CO2] was enhanced (+17%) by elevated [CO2] and decreased (?12%) by warming. Many of these responses differ from those typically observed in temperate tree species. Our results show that long‐term physiological acclimation dampens the initial stimulation of plant net carbon assimilation to elevated [CO2], and of plant water use to warming. Models that do not account for these responses may thus overestimate the impacts of climate change on future boreal vegetation–atmosphere interactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号