首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   379篇
  免费   56篇
  2023年   1篇
  2022年   9篇
  2021年   15篇
  2020年   5篇
  2019年   4篇
  2018年   9篇
  2017年   7篇
  2016年   20篇
  2015年   21篇
  2014年   32篇
  2013年   31篇
  2012年   29篇
  2011年   34篇
  2010年   17篇
  2009年   16篇
  2008年   23篇
  2007年   19篇
  2006年   14篇
  2005年   16篇
  2004年   17篇
  2003年   20篇
  2002年   15篇
  2001年   11篇
  2000年   9篇
  1999年   3篇
  1998年   3篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   4篇
  1991年   2篇
  1989年   5篇
  1988年   1篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1983年   3篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
排序方式: 共有435条查询结果,搜索用时 312 毫秒
91.
Mesoporous activated carbon (MAC) derived from rice husk is used for the immobilization of acidic lipase (ALIP) produced from Pseudomonas gessardii. The purified acidic lipase had the specific activity and molecular weight of 1473 U/mg and 94 kDa respectively. To determine the optimum conditions for the immobilization of lipase onto MAC, the experiments were carried out by varying the time (10–180 min), pH (2–8), temperature (10–50 °C) and the initial lipase activity (49 × 103, 98 × 103, 147 × 103 and 196 × 103 U/l in acetate buffer). The optimum conditions for immobilization of acidic lipase were found to be: time—120 min; pH 3.5; temperature—30 °C, which resulted in achieving a maximum immobilization of 1834 U/g. The thermal stability of the immobilized lipase was comparatively higher than that in its free form. The free and immobilized enzyme kinetic parameters (Km and Vmax) were found using Michaelis–Menten enzyme kinetics. The Km values for free enzyme and immobilized one were 0.655 and 0.243 mM respectively. The immobilization of acidic lipase onto MAC was confirmed using Fourier Transform-Infrared Spectroscopy, X-ray diffraction analysis and scanning electron microscopy.  相似文献   
92.
L-Lysine HCI is being proposed to be a possible biocompatible adjuvant to enhance immune response by virtue of its probable non-specific bridging action and cellular proliferation properties. This proposal has been tried to be substantiated by designing an in vitro culture protocol, varying the concentration of L-lysine HCI and its further in vivo application. Splenic lymphocyte population has been extracted from mice and co-cultured with extracted mice macrophage population in presence of either Bacille Calmette Guerrin (BCG) or Hepatitis B surface antigen (HbsAg) and added L-lysine hydrochloride in culture media. Post incubation of these cultures, "taught" cell population has been adoptively transferred in na?ve mice. These mice were then challenged by respective antigen dose, Change in Immune response with this challenge was noted. Antibody titre was followed in all the experiments as a measure of immune response. In adoptive immune transfer experiment of with HbsAg (AIT-HbsAg), similar to that with BCG (AIT-BCG), after the incubation period, antibody titre was higher in added lysine containing cultures in comparison with the control ones. Post transfer followed by antigen challenge, in AIT-BCG the expected augmentation in immune response was hardly visible. But in AIT-HbsAg, with the help of lysine booster, the animals responded better as far as the antibody titre is concerned.  相似文献   
93.
Biofilms are composed of bacterial cells embedded in an extracellular polysaccharide matrix. A major component of the Escherichia coli biofilm matrix is PGA, a linear polymer of N-acetyl-D-glucosamine residues in beta(1,6) linkage. PGA mediates intercellular adhesion and attachment of cells to abiotic surfaces. In this report, we present genetic and biochemical evidence that PGA is also a major matrix component of biofilms produced by the human periodontopathogen Actinobacillus actinomycetemcomitans and the porcine respiratory pathogen Actinobacillus pleuropneumoniae. We also show that PGA is a substrate for dispersin B, a biofilm-releasing glycosyl hydrolase produced by A. actinomycetemcomitans, and that an orthologous dispersin B enzyme is produced by A. pleuropneumoniae. We further show that A. actinomycetemcomitans PGA cross-reacts with antiserum raised against polysaccharide intercellular adhesin, a staphylococcal biofilm matrix polysaccharide that is genetically and structurally related to PGA. Our findings confirm that PGA functions as a biofilm matrix polysaccharide in phylogenetically diverse bacterial species and suggest that PGA may play a role in intercellular adhesion and cellular detachment and dispersal in A. actinomycetemcomitans and A. pleuropneumoniae biofilms.  相似文献   
94.
Type 1 reoviruses invade the intestinal mucosa of mice by adhering selectively to M cells in the follicle-associated epithelium and then exploiting M cell transport activity. The purpose of this study was to identify the apical cell membrane component and viral protein that mediate the M cell adherence of these viruses. Virions and infectious subviral particles of reovirus type 1 Lang (T1L) adhered to rabbit M cells in Peyer's patch mucosal explants and to tissue sections in an overlay assay. Viral adherence was abolished by pretreatment of sections with periodate and in the presence of excess sialic acid or lectins MAL-I and MAL-II (which recognize complex oligosaccharides containing sialic acid linked alpha2-3 to galactose). The binding of T1L particles to polarized human intestinal (Caco-2(BBe)) cell monolayers was correlated with the presence of MAL-I and MAL-II binding sites, blocked by excess MAL-I and -II, and abolished by neuraminidase treatment. Other type 1 reovirus isolates exhibited MAL-II-sensitive binding to rabbit M cells and polarized Caco-2(BBe) cells, but type 2 or type 3 isolates including type 3 Dearing (T3D) did not. In assays using T1L-T3D reassortants and recoated viral cores containing T1L, T3D, or no sigma1 protein, MAL-II-sensitive binding to rabbit M cells and polarized Caco-2(BBe) cells was consistently associated with the T1L sigma1. MAL-II-recognized oligosaccharide epitopes are not restricted to M cells in vivo, but MAL-II immobilized on virus-sized microparticles bound only to the follicle-associated epithelium and M cells. The results suggest that selective binding of type 1 reoviruses to M cells in vivo involves interaction of the type 1 sigma1 protein with glycoconjugates containing alpha2-3-linked sialic acid that are accessible to viral particles only on M cell apical surfaces.  相似文献   
95.
96.
Human herpesvirus 8 (HHV-8) or Kaposi's sarcoma-associated herpesvirus, implicated in the pathogenesis of Kaposi's sarcoma, utilizes heparan sulfate-like molecules to bind the target cells via its envelope-associated glycoproteins gB and gpK8.1A. HHV-8-gB possesses the Arg-Gly-Asp (RGD) motif, the minimal peptide region of many proteins known to interact with subsets of host cell surface integrins. HHV-8 utilizes alpha3beta1 integrin as one of the receptors for its entry into the target cells via its gB interaction and induces the activation of focal adhesion kinase (FAK) (S. M. Akula, N. P. Pramod, F.-Z. Wang, and B. Chandran, Cell 108:407-419, 2002). Since FAK activation is the first step in the outside-in signaling necessary for integrin-mediated cytoskeletal rearrangements, cell adhesions, motility, and proliferation, the ability of HHV-8-gB to mediate the target cell adhesion was examined. A truncated form of gB without the transmembrane and carboxyl domains (gBdeltaTM) and a gBdeltaTM mutant (gBdeltaTM-RGA) with a single amino acid mutation (RGD to RGA) were expressed in a baculovirus system and purified. Radiolabeled HHV-8-gBdeltaTM, gBdeltaTM-RGA, and deltaTMgpK8.1A proteins bound to the human foreskin fibroblasts (HFFs), human dermal microvascular endothelial (HMVEC-d) cells, human B (BJAB) cells, and Chinese hamster ovary (CHO-K1) cells with equal efficiency, which was blocked by preincubation of proteins with soluble heparin. Maxisorp plate-bound gBdeltaTM protein induced the adhesion of HFFs and HMVEC-d and monkey kidney epithelial (CV-1) cells in a dose-dependent manner. In contrast, the gBdeltaTM-RGA and DeltaTMgpK8.1A proteins did not mediate adhesion. Adhesion mediated by gBdeltaTM was blocked by the preincubation of target cells with RGD-containing peptides or by the preincubation of plate-bound gBdeltaTM protein with rabbit antibodies against gB peptide containing the RGD sequence. In contrast, adhesion was not blocked by the preincubation of plate-bound gBdeltaTM protein with heparin, suggesting that the adhesion is mediated by the RGD amino acids of gB, which is independent of the heparin-binding domain of gB. Integrin-ligand interaction is dependent on divalent cations. Adhesion induced by the gBdeltaTM was blocked by EDTA, thus suggesting the role of integrins in the observed adhesions. Focal adhesion components such as FAK and paxillin were activated by the binding of gBdeltaTM protein to the target cells but not by gBdeltaTM-RGA protein binding. Inhibition of FAK phosphorylation by genistein blocked gBdeltaTM-induced FAK activation and cell adhesion. These findings suggest that HHV-8-gB could mediate cell adhesion via its RGD motif interaction with the cell surface integrin molecules and indicate the induction of cellular signaling pathways, which may play roles in the infection of target cells and in Kaposi's sarcoma pathogenesis.  相似文献   
97.
BACKGROUND: Collagen gels are important as platforms for in vitro study of cell behavior and as prototypical bioartificial tissues, but their mechanical behavior, particularly on the microscopic scale, is still poorly understood. METHOD OF APPROACH: Collagen gels were studied in step (10% strain in 0.05 s) and ramp (0.1%/s strain rate for 100 s) confined compression. Real-time birefringence mapping gave the local collagen concentration and orientation along with piston stress. Variations in the retardation allowed material-point tracking and qualitative determination of the strain distribution. RESULTS: Ramp tests showed classical poroelastic behavior: compression near the piston and relaxation to a uniform state. Step tests, however, showed an irreversibly collapsed region near the piston. CONCLUSIONS: Our results suggest that interstitial flow and fibril bending at crosslinks are the dominant mechanical processes during compression, and that fibril bending is reversible before collapse.  相似文献   
98.
99.
The design of high-affinity, RNA-binding ligands has proven very challenging. This is due to the unique structural properties of RNA, often characterized by polar surfaces and high flexibility. In addition, the frequent lack of well-defined binding pockets complicates the development of small molecule binders. This has triggered the search for alternative scaffolds of intermediate size. Among these, peptide-derived molecules represent appealing entities as they can mimic structural features also present in RNA-binding proteins. However, the application of peptidic RNA-targeting ligands is hampered by a lack of design principles and their inherently low bio-stability. Here, the structure-based design of constrained α-helical peptides derived from the viral suppressor of RNA silencing, TAV2b, is described. We observe that the introduction of two inter-side chain crosslinks provides peptides with increased α-helicity and protease stability. One of these modified peptides (B3) shows high affinity for double-stranded RNA structures including a palindromic siRNA as well as microRNA-21 and its precursor pre-miR-21. Notably, B3 binding to pre-miR-21 inhibits Dicer processing in a biochemical assay. As a further characteristic this peptide also exhibits cellular entry. Our findings show that constrained peptides can efficiently mimic RNA-binding proteins rendering them potentially useful for the design of bioactive RNA-targeting ligands.  相似文献   
100.
T cell accumulation and effector function following CNS infection is limited by a paucity of Ag presentation and inhibitory factors characteristic of the CNS environment. Differential susceptibilities of primary and recall CD8+ T cell responses to the inhibitory CNS environment were monitored in naive and CD8+ T cell-immune mice challenged with a neurotropic coronavirus. Accelerated virus clearance and limited spread in immunized mice was associated with a rapid and increased CNS influx of virus-specific secondary CD8+ T cells. CNS-derived secondary CD8+ T cells exhibited increased cytolytic activity and IFN-gamma expression per cell compared with primary CD8+ T cells. However, both Ag-specific primary and secondary CD8+ T cells demonstrated similar contraction rates. Thus, CNS persistence of increased numbers of secondary CD8+ T cells reflected differences in the initial pool size during peak inflammation rather than enhanced survival. Unlike primary CD8+ T cells, persisting secondary CD8+ T cells retained ex vivo cytolytic activity and expressed high levels of IFN-gamma following Ag stimulation. However, both primary and secondary CD8+ T cells exhibited reduced capacity to produce TNF-alpha, differentiating them from effector memory T cells. Activation of primary and secondary CD8+ T cells in the same host using adoptive transfers confirmed similar survival, but enhanced and prolonged effector function of secondary CD8+ T cells in the CNS. These data suggest that an instructional program intrinsic to T cell differentiation, rather than Ag load or factors in the inflamed CNS, prominently regulate CD8+ T cell function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号