首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1257篇
  免费   94篇
  国内免费   3篇
  2023年   9篇
  2022年   33篇
  2021年   65篇
  2020年   25篇
  2019年   26篇
  2018年   40篇
  2017年   29篇
  2016年   41篇
  2015年   54篇
  2014年   62篇
  2013年   85篇
  2012年   105篇
  2011年   102篇
  2010年   41篇
  2009年   46篇
  2008年   81篇
  2007年   59篇
  2006年   43篇
  2005年   32篇
  2004年   34篇
  2003年   30篇
  2002年   25篇
  2001年   35篇
  2000年   34篇
  1999年   17篇
  1998年   12篇
  1997年   11篇
  1996年   4篇
  1995年   9篇
  1994年   8篇
  1993年   7篇
  1992年   22篇
  1991年   12篇
  1990年   11篇
  1989年   18篇
  1988年   11篇
  1987年   4篇
  1986年   6篇
  1985年   3篇
  1984年   7篇
  1983年   4篇
  1982年   4篇
  1980年   6篇
  1979年   7篇
  1978年   4篇
  1977年   4篇
  1975年   3篇
  1973年   3篇
  1972年   5篇
  1971年   5篇
排序方式: 共有1354条查询结果,搜索用时 15 毫秒
111.
112.
A Systematic investigation of the effect of pH on concanavalin A in the presence of specific and non-specific sugars is made using CD (circular dichroism) and fluorescence. The specific and non-specific sugars for concanavalin A were methyl alpha-D-glucopyranoside and methyl alpha-D-galactopyranoside respectively. Far-UV CD showed changes in the MRE value at 217 nm in the presence of the above-mentioned sugars. At pH 7, the CD and fluorescence spectra obtained in the presence of methyl alpha-D-glucopyranoside were slightly different from those for the native state and a significant difference was obtained in the presence of methyl alpha-D-galactopyranoside. Near-UV CD spectra showed the retention of a native-like tertiary structure in the presence of the specific sugar upon pH denaturation. Tryptophan fluorescence studies indicated a change in the tryptophan enviornment. The results obtained from our CD data are consistent with those obtained from fluorescence studies. Upon pH exposure of concanavalin A in the presence of methyl alpha-D-glucopyranoside and methyl alpha-D-galactopyranoside, the former acted as a protector preventing conformational alteration at different pH while the presence of latter induced a different stable conformational state and this state persists over the pH range from 2 to 10.  相似文献   
113.
The effect of water on the structure and physical properties of amorphous polysaccharide matrices is investigated by combining a thermodynamic approach including pressure- and temperature-dependent dilatometry with a nanoscale analysis of the size of intermolecular voids using positron annihilation lifetime spectroscopy. Amorphous polysaccharides are of interest because of a number of unusual properties which are likely to be related to the extensive hydrogen bonding between the carbohydrate chains. Uptake of water by the carbohydrate matrices leads to a strong increase in the size of the holes between the polymer chains in both the glassy and rubbery states while at the same time leading to an increase in matrix free volume. Thermodynamic clustering theory indicates that, in low-moisture carbohydrate matrices, water molecules are closely associated with the carbohydrate chains. Based on these observations, we propose a novel model of plasticization of carbohydrate polymers by water in which the water dynamically disrupts chains the hydrogen bonding between the carbohydrates, leading to an expansion of the matrix originating at the nanolevel and increasing the number of degrees of freedom of the carbohydrate chains. Consequently, even in the glassy state, the uptake of water leads to increased rates of matrix relaxation and mobility of small permeants. In contrast, low-molecular weight sugars plasticize the carbohydrate matrix without appreciably changing the structure and density of the rubbery state, and their role as plasticizer is most likely related to a reduction of the number of molecular entanglements. The improved molecular packing in glassy matrices containing low molecular weight sugars leads to a higher matrix density, explaining, despite the lower glass transition temperature, the reduced mobility of small permeants in such matrices.  相似文献   
114.
Circulating estradiol-17beta (E2) levels decrease precipitously during female to male (protogynous) sex change in fish. Whether this drop in E2 levels is a cause or consequence of sex change is still largely unknown. The present study treated adult female honeycomb groupers (Epinephelus merra) with aromatase inhibitor (AI, Fadrozole), either alone or in combination with E2, to investigate the role of estrogen in protogynous sex change. Control fish had ovaries undergoing active vitellogenesis; the gonads of AI-treated fish had already developed into testes, which produced sperm capable of fertilization. In contrast, co-treatment of fish with E2 completely blocked AI-induced sex reversal. AI treatment significantly reduced circulating levels of E2, whereas the addition of E2 to AI prevented the loss. The plasma androgen (testosterone and 11-ketotestosterone) levels were increased in the AI-treated fish, while the levels in the E2-supplemented fish were low compared to controls. Present results show that E2 plays an important role in maintaining female sex of hermaphrodite fishes, and that the inhibition of E2 synthesis causes oocyte degeneration leading to testicular differentiation in the ovary.  相似文献   
115.
Neural stem cells (NSCs) are undifferentiated, primitive cells with important potential applications including the replacement of neural tissue lost due to neurodegenerative diseases, including Parkinson's disease, as well as brain and spinal cord injuries, including stroke. We have developed methods to rapidly expand populations of mammalian stem and progenitor cells in neurosphere cultures. In the present study, flow cytometry was used in order to understand cell cycle activation and proliferation of neural stem and progenitor cells in suspension bioreactors. First, a protocol was developed to analyze the cell cycle kinetics of NSCs. As expected, neurosphere cells were found to cycle slowly, with a very small proportion of the cell population undergoing mitosis at any time. Large fractions (65-70%) of the cells were detected in G1, even in rapidly proliferating cultures, and significant fractions (20%) of the cells were in G0. Second, it was observed that different culturing methods influence both the proportion of neurosphere cells in each phase of the cell cycle and the fraction of actively proliferating cells. The results show that suspension culture does not significantly alter the cell cycle progression of neurosphere cells, while long-term culture (>60 days) results in significant changes in cell cycle kinetics. This suggests that when developing a process to produce neural stem cells for clinical applications, it is imperative to track the cell cycle kinetics, and that a short-term suspension bioreactor process can be used to successfully expand neurosphere cells.  相似文献   
116.
117.
Recent work supports the hypotheses developed by von Economo and Nauta and elaborated by Sallanon et al. that the POA contains a sleep-promoting output that opposes wake-promoting neuronal groups in the PH. The POA gives rise to descending pathways that terminate within wake-promoting populations in pLH, PH and midbrain. Current evidence suggests that this output originates in POA sleep-active GABAergic neurons. This output also seems to convey the signals of homeostatic drive. Disynaptic projections from the SCN to both MnPN and VLPO were recently identified. These may regulate the circadian control of sleep propensity. The hypothesis that the descending projections from POA sleep-active neurons to sites of arousal-related neurons originates in GABAergic neurons must be confirmed. Also to be further clarified is the anatomical distribution of putative sleep-active GABAergic neurons within the POA. Segregated groups have been found in the MnPN and VLPO, but unit recording studies of sleep-active neurons, lesion studies and local neurochemical application studies all indicate that sleep-active neurons may be found diffusely in the POA and adjacent areas. The MnPN has been shown previously to be involved in water balance and blood pressure regulation and to be responsive to hyperthermia. Our studies suggest that this nucleus also contains sleep-active, putative sleep-promoting neurons. However, interactions between sleep control and physiological variables must be considered. In particular, the details of neuronal basis of the coupling of warm-sensitive neurons in MnPN to the POA hypnogenic output has not been explored. It is also worth noting that both the VLPO and MnPN lie close to the ventricular and subarachnoid surface and are punctuated by radial arterioles. The possibility that the sleep-regulatory functions of these sites is coupled to physiological signals conveyed through epithelial cells has been suggested for the actions of PGD2 but has yet to be explored in detail for other putative hypnogens.  相似文献   
118.
Since its discovery, caspase-8 has been placed at the apex of the proteolytic cascade triggered by death receptor (DR) cross-linking. Because of its capacity to interact with the cytoplasmic portion of DR, it has been suggested that caspase-8 acts independently of other caspases in the initiation of Fas and other DR signaling. In this study, we demonstrate that in Jurkat cells, caspase-3 cleavage is an early step during Fas-induced apoptosis. We show that caspase-3 processing into its p20 occurs rapidly after Fas cross-linking, in the absence of mitochondrial depolarization and caspase-9 activation. Moreover, caspase-3 is present in lipid rafts of untreated Jurkat cells and peripheral T lymphocytes. Caspase-3, caspase-8, and Fas-associated death domain are further recruited to lipid rafts of Jurkat cells following anti-Fas treatment. Fas immunoprecipitation reveals that caspase-3 is a component of the death-inducing signaling complex, suggesting that this cysteine protease is in close proximity to caspase-8. Furthermore, transduction of Jurkat cells with a caspase-3 dominant-negative form inhibits caspase-8 processing and results in inhibition of apoptosis, suggesting that caspase-3 activity is required for caspase-8 activation. Overall, these findings support a model whereby caspase-3 is a component of the death-inducing signaling complex located in lipid rafts, and as such, is involved in the amplification of caspase-8 activity by the mitochondrion.  相似文献   
119.
Waris G  Alam K 《Life sciences》2004,75(22):2633-2642
Superoxide anion radical (SAR) is formed in almost all aerobic cells and it is the most abundant species generated by several enzymatic and non-enzymatic pathways in mammalian tissues, leading to unfavorable alteration of biomolecules including DNA. The SAR-modified macromolecules have been implicated in several disease states including disorders of inflammation. The SAR-induced damage to DNA showed hyperchromicity, single strand breaks, decrease in melting temperature, and modification of bases. Superoxide modified-DNA in rabbits elicited high titer antibodies and showed diverse antigens binding characteristics. The induced antibodies recognized native DNA and other nucleic acid polymers. Anti-DNA IgG from SLE sera, purified on Protein-A-Sepharose matrix, exhibited increased recognition of superoxide anion radical modified-DNA than native DNA in competitive immunoassay. The visual formation of immune complex between induced antibodies and native DNA, and between SLE anti-DNA IgG and superoxide modified-DNA, is a clear indication of property sharing between SLE autoantibodies and experimentally induced antibodies against superoxide modified-DNA.  相似文献   
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号