首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2079篇
  免费   128篇
  2207篇
  2023年   14篇
  2022年   30篇
  2021年   39篇
  2020年   32篇
  2019年   27篇
  2018年   62篇
  2017年   34篇
  2016年   57篇
  2015年   96篇
  2014年   95篇
  2013年   139篇
  2012年   167篇
  2011年   124篇
  2010年   72篇
  2009年   72篇
  2008年   95篇
  2007年   112篇
  2006年   95篇
  2005年   87篇
  2004年   76篇
  2003年   57篇
  2002年   58篇
  2001年   50篇
  2000年   39篇
  1999年   26篇
  1998年   24篇
  1997年   19篇
  1996年   10篇
  1995年   19篇
  1994年   10篇
  1992年   25篇
  1991年   35篇
  1990年   20篇
  1989年   10篇
  1988年   20篇
  1987年   25篇
  1986年   21篇
  1985年   21篇
  1984年   21篇
  1983年   11篇
  1982年   12篇
  1981年   10篇
  1979年   17篇
  1978年   9篇
  1977年   9篇
  1976年   10篇
  1975年   17篇
  1974年   11篇
  1973年   10篇
  1968年   7篇
排序方式: 共有2207条查询结果,搜索用时 15 毫秒
61.
The circular dichroism spectra of hen egg white lysozyme, and of lysozyme derivatives in which tryptophan residues 62 or 108, or both, are selectively oxidized, have been measured as a function of pH over the range of 200 to 310 nm. Neither Trp-62 nor Trp-108 is principally responsible for the positive rotational strength in the 280 to 300 nm region. The spectrum in the 200 to 230 nm region is nearly the same in the native protein and in the derivatives, and is little affected by binding of saccharide. These results are used to reinterpret the circular dichroism spectra of the lysozymes and alpha-lactalbumins.  相似文献   
62.
A new adenosine analogue has been synthesized, 5'-fluorosulfonylbenzoyl adenosine, which reacts covalently with bovine liver glutamate dehydrogenase with the incorporation of approximately 1 mol of 5'-sulfonylbenzoyl adenosine per peptide chain. Native glutamate dehydrogenase is known to be inhibited by relatively high concentrations of DPNH by binding to a second noncatalytic site; the major change in the kinetic characteristics of the modified enzyme is a total loss of this inhibition by DPNH. The modified enzyme retains full catalytic activity as measured in the absence of allosteric ligands, is still inhibited more than 90% by GTP, and is activated normally by ADP. These results demonstrate that the catalytic as well as the GTP and ADP regulatory sites are distinct from the inhibitory DPNH site. The rate constant for reaction of 5'-fluorosulfonylbenzoyl adenosine is decreased by high concentrations of DPNH alone or by DPNH plus GTP, but not by the substrate alpha-ketoglutarate, the coenzymes DPN or TPNH, or the regulators ADP or GTP alone. These observations are consistent with the postulate that the 5'-fluorosulfonylbenzoyl adenosine attacks exclusively the second inhibitory DPNH site. The DPNH inhibition is abolished when an average of only 0.5 mol of 5'-sulfonylbenzoyl adenosine per peptide chain has been incorporated. The structure of 5'-fluorosulfonylbenzoyl adenosine is critical in determining the course of the modification reaction. The smaller compound p-fluorosulfonylbenzoic acid does not affect the kinetic characteristics of the enzyme, and the isomeric compound 3'-fluorosulfonylbenzoyl adenosine produces a different pattern of changes in the regulatory properties (Pal. P. K., Wechter, W. J., and Colman, R. F. (1975) Biochemistry 14, 707-715). Indeed, enzyme which has combined stoichiometrically with 5'-fluorosulfonylbenzoyl adenosine is still able to react with 3'-fluorosulfonylbenzoyl adenosine; thus, the two adenosine analogues appear to react at distinct sites on glutamate dehydrogenase. It is proposed that 5'-fluorosulfonylbenzoyl adenosine will be complementary to 3'-fluorosulfonylbenzoyl adenosine as a general affinity label for dehydrogenases as well as other classes of enzymes which use adenine nucleotides as substrates or regulators.  相似文献   
63.
The major phosphoprotein common to woolly monkey sarcoma virus, gibbon ape lymphosarcoma virus, and type C viruses of the lower mammalian species (mouse, rat, cat), with the exception of the endogenous cat virus (RD-114), is the polypeptide of about 12,000 molecular weight. The protein-phosphate bond in this polypeptide of several viruses is of the phosphoserine variety excepting gibbon ape virus, which contains both phosphoserine and phosphothreonine. The primary phosphoprotein of RD-114 virus and the endogenous baboon type C virus, on the other hand, is the polypeptide of about 15,000 molecular weight which contains phosphothreonine as its phosphoamino acid. A second major phosphoprotein of molecular weight of 10,000 is detected only in viruses genetically related to rat species including those derived from the RPL cell line, from Sprague-Dawley rat embryo cells, and the Kirsten mouse sarcoma virus which was recovered from a mouse erythroblastosis virus after in vivo propagation through rat. These phosphorylated polypeptides of molecular weight 15,000, 12,000, or 10,000 are present in the virion structure in several different but nonrandom phosphorylated states.  相似文献   
64.
Phosphoproteins: structural components of oncornaviruses.   总被引:14,自引:14,他引:0       下载免费PDF全文
Oncornaviruses, which contain a virion-associated protein kinase, were found to possess phosphoproteins as virion structural components. One major phosphoprotein common to strains of laboratory and wild mouse oncornaviruses and a strain of feline leukemia virus was shown to be a polypeptide of about 12, 000 mol wt. In addition to this, the Kirsten strain of murine sarcoma virus contained a second major phosphoprotein of about 10, 000 mol wt, and mouse erythroblastosis virus contained a second major phosphoprotein that was either identical to or comigrated with the virion glycoprotein of about 74, 000 mol wt. The major phosphoprotein of RD-114 virus was found to be of about 16, 000 mol wt. The major phosphoamino acid of the 12, 000-mol wt polypeptide of the mouse erythroblastosis virus was identified as phosphoserine, and that of the 16, 000-mol wt polypeptide of the RD-114 virus was identified as phosphothreonine.  相似文献   
65.
66.
BackgroundCOVID-19 is caused by a novel coronavirus, named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The foremost predominant complication of SARS-CoV-2 is arterial hypoxemia thereby disturbing lung compliance, requiring mechanical ventilation. The aim of the current research study is to analyze role of ABG as a valuable assessment tool of disease severity in SARS-CoV-2 patients.Methods170 arterial blood samples were collected from patients admitted in Intensive Care Unit (ICU) of Sri Guru Ram Das Charitable Hospital, Amritsar. They were analyzed for arterial blood gas using ABG analyzer. Parameters of ABG such as pH, pCO2, HCO3, O2 saturation, ionized calcium (iCa) and calculated ionized calcium (at pH 7.4) was calculated for all the samples.ResultsContinuous variables were described as medians with interquartile ranges (IQRs) and categorical variables as percentages and frequencies. Spearman correlation test was done for calculation of correlation between pH and other ABG parameters. Analysis of arterial blood gas revealed significant negative correlation (p<0.05) between pH and pCO2 and significant positive correlation (p<0.05) between pH and HCO3 and between pH and delta ionized calcium. Low levels (98.2%) of ionized calcium were observed while monitoring the ABG findings though weak negative correlation (p<0.05) was observed between pH and iCa.ConclusionsOur study suggests that ABG analysis acts as a momentous indicator for critically ill patients admitted in Intensive Care Unit (ICU). Estimation of iCa in this critical care setting acts as a distinctive biochemical feature of SARS-CoV-2 disease, as an initial assessment tool, for hypocalcemia.  相似文献   
67.
In this work we investigated the antibacterial properties of differently shaped silver nanoparticles against the gram-negative bacterium Escherichia coli, both in liquid systems and on agar plates. Energy-filtering transmission electron microscopy images revealed considerable changes in the cell membranes upon treatment, resulting in cell death. Truncated triangular silver nanoplates with a {111} lattice plane as the basal plane displayed the strongest biocidal action, compared with spherical and rod-shaped nanoparticles and with Ag(+) (in the form of AgNO(3)). It is proposed that nanoscale size and the presence of a {111} plane combine to promote this biocidal property. To our knowledge, this is the first comparative study on the bactericidal properties of silver nanoparticles of different shapes, and our results demonstrate that silver nanoparticles undergo a shape-dependent interaction with the gram-negative organism E. coli.  相似文献   
68.
Piwi-interacting RNAs (piRNAs) are a distinct group of small noncoding RNAs (sncRNAs) that silence transposable genetic elements to protect genome integrity. Because of their limited expression in gonads and sequence diversity, piRNAs remain the most mysterious class of small RNAs. Studies have shown piRNAs are present in somatic cells and dysregulated in gastric, breast and liver cancers. By deep sequencing 24 frozen benign kidney and clear cell renal cell carcinoma (ccRCC) specimens and using the publically available piRNA database, we found 26,991 piRNAs present in human kidney tissue. Among 920 piRNAs that had at least two copies in one specimen, 19 were differentially expressed in benign kidney and ccRCC tissues, and 46 were associated with metastasis. Among the metastasis-related piRNAs, we found three piRNAs (piR-32051, piR-39894 and piR-43607) to be derived from the same piRNA cluster at chromosome 17. We confirmed the three selected piRNAs not to be miRNAs or miRNA-like sncRNAs. We further validated the aberrant expression of the three piRNAs in a 68-case formalin-fixed and paraffin-embedded (FFPE) ccRCC tissue cohort and showed the up-regulation of the three piRNAs to be highly associated with ccRCC metastasis, late clinical stage and poor cancer-specific survival.  相似文献   
69.
Pal A  Gu Y  Pan SS  Ji X  Singh SV 《Biochemistry》2001,40(24):7047-7053
The molecular basis for catalytic differences between structurally closely related murine class alpha glutathione (GSH) transferases mGSTA1-1 and mGSTA2-2 in the GSH conjugation of anti-diol epoxide isomers of benzo[c]phenanthrene (anti-B[c]PDE) was investigated. GSH conjugation of both (-)- and (+)-enantiomers of anti-B[c]PDE was observed in the presence of mGSTA1-1 (60 and 40% GSH conjugation, respectively), whereas mGSTA2-2 exhibited a preference for the (-)-anti-isomer (>97%). In addition, the specific activity of mGSTA2-2 toward the (-)-anti-B[c]PDE isomer was relatively higher than that of mGSTA1-1. The amino acid sequences of mGSTA1-1 and mGSTA2-2 differ at 10 positions that are distributed in three sections. Section I contains amino acid residues in positions 65 and 95; section II contains residues in positions 157, 162, and 169, and section III contains residues in positions 207, 213, 218, 221, and 222. Enzyme activity measurements with chimeras of mGSTA1-1 and mGSTA2-2 revealed that amino acid substitutions in section III account for their differential enantioselectivity and catalytic activity toward anti-B[c]PDE. Site-directed mutagenesis of amino acid residues in section III of mGSTA2-2 with corresponding residues of mGSTA1-1 followed by activity measurements of the wild type and mutated enzymes indicates that leucine 207 and phenylalanine 221 may be critical for the high catalytic activity of mGSTA2-2 toward (-)-anti-B[c]PDE. Molecular modeling studies demonstrated that the active site of mGSTA1-1 accommodates both enantiomers of anti-B[c]PDE, whereas the (-)-anti-isomer interacts more favorably with active site residues in mGSTA2-2. The results of this study clearly indicate that amino acid substitutions in the C-terminal region contribute to catalytic differences between mGSTA1-1 and mGSTA2-2 with respect to anti-B[c]PDE.  相似文献   
70.
Free-living nitrogen-fixing bacteria have been identified as a potential source of poly-3-hydroxybutyric acid (PHB). Systematic study of this ability of N2-fixing organisms has lead to the isolation of an efficient strain, identified asAzotobacter chroococcum. Nutritional requirements and cultural conditions for optimal production of PHB by this strain under laboratory conditions were determined. In N-free liquid medium containing 2% glucose, the strain accumulated PHB up to 68% of its cell dry mass. Glucose and mannitol were found to be the best carbon sources, while organic nitrogen compounds were preferred as nitrogen source. Maximum yield (3.3 g/L) was obtained with 0.2% bactopeptone supplementation. Inorganic phosphate at a concentration suboptimal for growth had some growth-promoting effect. Under oxygen limiting conditions, biomass production was enhanced but a different response was obtained for PHB production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号