首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   315篇
  免费   12篇
  2023年   1篇
  2022年   12篇
  2021年   10篇
  2020年   8篇
  2019年   6篇
  2018年   11篇
  2017年   10篇
  2016年   14篇
  2015年   22篇
  2014年   21篇
  2013年   30篇
  2012年   28篇
  2011年   18篇
  2010年   24篇
  2009年   17篇
  2008年   11篇
  2007年   20篇
  2006年   16篇
  2005年   9篇
  2004年   7篇
  2003年   12篇
  2002年   4篇
  2001年   2篇
  1998年   1篇
  1997年   1篇
  1993年   2篇
  1987年   5篇
  1986年   3篇
  1984年   2篇
排序方式: 共有327条查询结果,搜索用时 15 毫秒
101.
Dilated Cardiomyopathy (DCM) is characterized by systolic dysfunction, followed by heart failure necessitating cardiac transplantation. The genetic basis is well established by the identification of mutations in sarcomere and cytoskeleton gene/s. Modifier genes and environmental factors are also considered to play a significant role in the variable expression of the disease, hence various mechanisms are implicated and one such mechanism is oxidative stress. Nitric Oxide (NO), a primary physiological transmitter derived from endothelium seems to play a composite role with diverse anti-atherogenic effects as vasodilator. Three functional polymorphisms of endothelial nitric oxide synthase (NOS3) gene viz., T-786C of the 5′ flanking region, 27bp VNTR in intron4 and G894T of exon 7 were genotyped to identify their role in DCM. A total of 115 DCM samples and 454 controls were included. Genotyping was carried out by PCR -RFLP method. Allelic and genotypic frequencies were computed in both control & patient groups and appropriate statistical tests were employed. A significant association of TC genotype (T-786C) with an odds ratio of 1.74, (95% CI 1.14 - 2.67, p = 0.01) was observed in DCM. Likewise the GT genotypic frequency of G894T polymorphism was found to be statistically significant (OR 2.10, 95% CI 1.34–3.27, p = 0.0011), with the recessive allele T being significantly associated with DCM (OR 1.64, 95% CI 1.18 - 2.30, p = 0.003). The haplotype carrying the recessive alleles of G894T and T-786C, C4bT was found to exhibit 7 folds increased risk for DCM compared to the controls. Hence C4bT haplotype could be the risk haplotype for DCM. Our findings suggest the possible implication of NOS3 gene in the disease phenotype, wherein NOS3 may be synergistically functioning in DCM associated heart failure via the excessive production of NO in cardiomyocytes resulting in decreased myocardial contractility and systolic dysfunction, a common feature of DCM phenotype.  相似文献   
102.
Hypertrophic Cardiomyopathy (HCM) is an autosomal dominant disorder of the myocardium which is hypertrophied resulting in arrhythmias and heart failure leading to sudden cardiac death (SCD). Several sarcomeric proteins and modifier genes have been implicated in this disease. Troponin I, being a part of the Troponin complex (troponin I, troponin C, troponin T), is an important gene for sarcomeric function. Four mutations (1 novel) were identified in Indian HCM cases, namely, Pro82Ser, Arg98Gln, Arg141Gln and Arg162Gln in Troponin I protein, which are in functionally significant domains. In order to analyse the effect of the mutations on protein stability and protein-protein interactions within the Troponin complex, an in silico study was carried out. The freely available X-ray crystal structure (PDB ID: 1JIE) was used as the template to model the protein followed by loop generation and development of troponin complex for both the troponin I wild type and four mutants (NCBI ID: PRJNA194382). The structural study was carried out to determine the effect of mutation on the structural stability and protein-protein interactions between three subunits in the complex. These mutations, especially the arginine to glutamine substitutions were found to result in local perturbations within the troponin complex by creating/removing inter/intra molecular hydrogen bonds with troponin T and troponin C. This has led to a decrease in the protein stability and loss of important interactions between the three subunits. It could have a significant impact on the disease progression when coupled with allelic heterogeneity which was observed in the cases carrying these mutations. However, this can be further confirmed by functional studies on protein levels in the identified cases.  相似文献   
103.
Magnaporthe grisea, the blast fungus is one of the main pathological threats to finger millet crop worldwide. A systematic search for the blast resistance gene analogs was carried out, using functional molecular markers. Three-fourths of the recognition-dependent disease resistance genes (R-genes) identified in plants encodes nucleotide binding site (NBS) leucine-rich repeat (LRR) proteins. NBS-LRR homologs have only been isolated on a limited scale from Eleusine coracana. Genomic DNA sequences sharing homology with NBS region of resistance gene analogs were isolated and characterized from resistant genotypes of finger millet using PCR based approach with primers designed from conserved regions of NBS domain. Attempts were made to identify molecular markers linked to the resistance gene and to differentiate the resistant bulk from the susceptible bulk. A total of 9 NBS-LRR and 11 EST-SSR markers generated 75.6 and 73.5% polymorphism respectively amongst 73 finger millet genotypes. NBS-5, NBS-9, NBS-3 and EST-SSR-04 markers showed a clear polymorphism which differentiated resistant genotypes from susceptible genotypes. By comparing the banding pattern of different resistant and susceptible genotypes, five DNA amplifications of NBS and EST-SSR primers (NBS-05504, NBS-09711, NBS-07688, NBS-03509 and EST-SSR-04241) were identified as markers for the blast resistance in resistant genotypes. Principal coordinate plot and UPGMA analysis formed similar groups of the genotypes and placed most of the resistant genotypes together showing a high level of genetic relatedness and the susceptible genotypes were placed in different groups on the basis of differential disease score. Our results provided a clue for the cloning of finger millet blast resistance gene analogs which not only facilitate the process of plant breeding but also molecular characterization of blast resistance gene analogs from Eleusine coracana.  相似文献   
104.
Type I protein kinase A (PKA) is targeted to the TCR-proximal signaling machinery by the A-kinase anchoring protein ezrin and negatively regulates T cell immune function through activation of the C-terminal Src kinase. RI anchoring disruptor (RIAD) is a high-affinity competitor peptide that specifically displaces type I PKA from A-kinase anchoring proteins. In this study, we disrupted type I PKA anchoring in peripheral T cells by expressing a soluble ezrin fragment with RIAD inserted in place of the endogenous A-kinase binding domain under the lck distal promoter in mice. Peripheral T cells from mice expressing the RIAD fusion protein (RIAD-transgenic mice) displayed augmented basal and TCR-activated signaling, enhanced T cell responsiveness assessed as IL-2 secretion, and reduced sensitivity to PGE(2)- and cAMP-mediated inhibition of T cell function. Hyperactivation of the cAMP-type I PKA pathway is involved in the T cell dysfunction of HIV infection, as well as murine AIDS, a disease model induced by infection of C57BL/6 mice with LP-BM5, a mixture of attenuated murine leukemia viruses. LP-BM5-infected RIAD-transgenic mice resist progression of murine AIDS and have improved viral control. This underscores the cAMP-type I PKA pathway in T cells as a putative target for therapeutic intervention in immunodeficiency diseases.  相似文献   
105.
We report a case of AML-M1 with 5q aberration at diagnosis. The patient was treated with high-dose chemotherapy (HDCT). After remission induction, he received allogenic peripheral blood stem cell transplantation (PBSCT) from an HLA-match donor brother. The successive follow-up conventional cytogenetics investigations in remission after HDCT and PBSCT revealed cytogenetic remission. The most interesting observation in this case is that relapsed marrow revealed the emergence of an entirely new, highly aberrant, unrelated clone with unusual translocations t(6;17)(p23;p11.2),+8,der(8)dup inv(8)(q23qter), t(10;19)(q26;q13.3) 4½ months after PBSCT. Our findings suggest the possibility of a mutagenic effect of HDCT and myeloablative intense chemotherapy before PBSCT that could have induced a genetic lesion in the recipient''s genetically unstable stem cells in an environment of immunosuppression. The highly complex nature of the clone and the rapid clonal evolution indicates the possibility of selective pressure with proliferative advantage.  相似文献   
106.
The present study was planned to investigate if combined administration of meso-2,3-dimercaptosuccinic acid (DMSA) and monoisoamyl DMSA (MiADMSA) could achieve better recovery in the altered biochemical parameters suggestive of brain oxidative stress and depletion of lead from blood and brain following acute lead exposure. Male Wistar rats were exposed to lead nitrate (50 mg/kg, i.p., once daily for 5 days) followed by treatment with the above chelating agents using two different doses of 25 or 50 mg/kg (orally) either alone and in combination once daily for five consecutive days. Lead exposure resulted in the significant inhibition of δ-aminolevulinic acid dehydratase activity and depletion of glutathione (GSH) in blood. These changes were accompanied by significant reduction in blood hemoglobin, RBC levels and superoxide dismutase and catalase activities. Significant increase in blood reactive oxygen species (ROS) and thiobarbituric acid reactive substances (TBARS) levels were noted. We observed marked increase in brain ROS level while GSH/oxidized glutathione ratio showed significant decrease accompanied by a significant increase in blood and brain lead concentration. The levels of norepinephrine, dopamine and serotonin in different brain regions were also altered on lead exposure. Co-administration of DMSA and MiADMSA particularly at the lower dose was most effective in the recovery of lead-induced changes in the hematological variables and oxidative stress and resulted in more pronounced depletion of lead from blood and brain compared to monotherapy with these chelators. On the other hand, combined administration of MiADMSA (50 mg/kg) in combination with DMSA (25 mg/kg each) had additional beneficial effect over the individual effect of chelating agent in the recovery of altered levels of brain biogenic amines. The study suggests that administration of MiADMSA is generally a better lead chelator than DMSA while combined administration of DMSA and MiADMSA might be a better treatment option compared to monotherapy at least in the removal of lead from the target tissues.  相似文献   
107.

Background

Cystic fibrosis transmembrane conductance regulator (CFTR) gene accounts for an autosomal recessive condition called cystic fibrosis (CF). In the Indian subcontinent, CF and its related diseases are under-diagnosed by the medical community due to poor knowledge of the disease and its confounding diagnosis, and also due to poor medical facilities available for these patients, thus causing an increased infant mortality rate with a low life expectancy in general. The aim of the study was to document the spectrum and distribution of CFTR mutations in controls, asthma and chronic pancreatitis cases of North India.

Methods

A total of 800 subjects including 400 controls, 250 asthma cases and150 chronic pancreatitis cases were analyzed for 6 mutations (F508del, G542X, G551D, R117H, W1282X, and S549N) and IVS8 Tn polymorphism.

Results

Out of 800 subjects, 18% [asthma — 24% (n = 250), CP — 29.33% (n = 150) cases and controls — 9.3% (n = 400)] were positive for heterozygous mutation, 0.8% of the (n = 250) asthmatic cases (n = 250) were homozygous for IVS8 T5 polymorphism while no subjects were found positive for W1282X mutation. T5 polymorphism was more common in asthmatic cases while F508del mutation in chronic pancreatitis cases. The carrier frequency of F508del, G542X, G551D, R117H, S549N and T5 was 0.015, 0.025, 0.02, 0.005, 0.005, and 0.022 respectively. The cumulative carrier frequency was 0.093.

Conclusion

CFTR mutations were underestimated in Indian population. The present study will serve in establishment of genetic screening and prenatal setup for Indian population.  相似文献   
108.
Cardiomyopathy is a major cause of heart failure and sudden cardiac death; several mutations in sarcomeric protein genes have been associated with this disease. Our aim in the present study is to investigate the genetic variations in Troponin T (cTnT) gene and its association with dilated cardiomyopathy (DCM) in south-Indian patients. Analyses of all the exons and exon-intron boundaries of cTnT in 147 DCM and in 207 healthy controls had revealed a total of 15 SNPs and a 5 bp INDEL; of which, polymorphic SNPs were compared with the HapMap population data. Interestingly, a novel R144W mutation, that substitutes polar-neutral tryptophan for a highly conserved basic arginine in cTnT, altering the charge drastically, was identified in a DCM, with a family history of sudden-cardiac death (SCD). This mutation was found within the tropomyosin (TPM1) binding domain, and was evolutionarily conserved across species, therefore it is expected to have a significant impact on the structure and function of the protein. Family studies had revealed that the R144W is co-segregating with disease in the family as an autosomal dominant trait, but it was completely absent in 207 healthy controls and in 162 previously studied HCM patients. Further screening of the proband and three of his family members (positive for R144W mutant) with eight other genes β-MYH7, MYBPC3, TPM1, TNNI3, TTN, ACTC, MYL2 and MYL3, did not reveal any disease causing mutation, proposing the absence of compound heterozygosity. Therefore, we strongly suggest that the novel R144W unique/private mutant identified in this study is associated with FDCM. This is furthermore signifying the unique genetic architecture of Indian population.  相似文献   
109.

Background

Chloroplast ATP/ADP transporters are essential to energy homeostasis in plant cells. However, their molecular mechanism remains poorly understood, primarily due to the difficulty of producing and purifying functional recombinant forms of these transporters.

Methodology/Principal Findings

In this work, we describe an expression and purification protocol providing good yields and efficient solubilization of NTT1 protein from Arabidopsis thaliana. By biochemical and biophysical analyses, we identified the best detergent for solubilization and purification of functional proteins, LAPAO. Purified NTT1 was found to accumulate as two independent pools of well folded, stable monomers and dimers. ATP and ADP binding properties were determined, and Pi, a co-substrate of ADP, was confirmed to be essential for nucleotide steady-state transport. Nucleotide binding studies and analysis of NTT1 mutants lead us to suggest the existence of two distinct and probably inter-dependent binding sites. Finally, fusion and deletion experiments demonstrated that the C-terminus of NTT1 is not essential for multimerization, but probably plays a regulatory role, controlling the nucleotide exchange rate.

Conclusions/Significance

Taken together, these data provide a comprehensive molecular characterization of a chloroplast ATP/ADP transporter.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号