首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   162篇
  免费   5篇
  2022年   1篇
  2021年   12篇
  2020年   4篇
  2019年   5篇
  2018年   5篇
  2017年   2篇
  2016年   11篇
  2015年   7篇
  2014年   8篇
  2013年   18篇
  2012年   4篇
  2011年   7篇
  2010年   11篇
  2009年   7篇
  2008年   10篇
  2007年   9篇
  2006年   20篇
  2005年   7篇
  2004年   10篇
  2003年   2篇
  2002年   3篇
  2000年   1篇
  1997年   1篇
  1987年   1篇
  1979年   1篇
排序方式: 共有167条查询结果,搜索用时 390 毫秒
11.
Amino acid sequence alignments of orthologous ribosomal proteins found in Bacteria, Archaea, and Eukaryota display, relative to one another, an unusual segment or block structure, with major evolutionary implications. Within each of the prokaryotic phylodomains the sequences exhibit substantial similarity, but cross-domain alignments break up into (a) universal blocks (conserved in both phylodomains), (b) bacterial blocks (unalignable with any archaeal counterparts), and (c) archaeal blocks (unalignable with any bacterial counterparts). Sequences of those eukaryotic cytoplasmic riboproteins that have orthologs in both Bacteria and Archaea, exclusively match the archaeal block structure. The distinct blocks do not correlate consistently with any identifiable functional or structural feature including RNA and protein contacts. This phylodomain-specific block pattern also exists in a number of other proteins associated with protein synthesis, but not among enzymes of intermediary metabolism. While the universal blocks imply that modern Bacteria and Archaea (as defined by their translational machinery) clearly have had a common ancestor, the phylodomain-specific blocks imply that these two groups derive from single, phylodomain-specific types that came into existence at some point long after that common ancestor. The simplest explanation for this pattern would be a major evolutionary bottleneck, or other scenario that drastically limited the progenitors of modern prokaryotic diversity at a time considerably after the evolution of a fully functional translation apparatus. The vast range of habitats and metabolisms that prokaryotes occupy today would thus reflect divergent evolution after such a restricting event. Interestingly, phylogenetic analysis places the origin of eukaryotes at about the same time and shows a closer relationship of the eukaryotic ribosome-associated proteins to crenarchaeal rather than euryarchaeal counterparts.  相似文献   
12.
Plasma, the soluble component of the human blood, is believed to harbor thousands of distinct proteins, which originate from a variety of cells and tissues through either active secretion or leakage from blood cells or tissues. The dynamic range of plasma protein concentrations comprises at least nine orders of magnitude. Proteins involved in coagulation, immune defense, small molecule transport, and protease inhibition, many of them present in high abundance in this body fluid, have been functionally characterized and associated with disease processes. For example, protein sequence mutations in coagulation factors cause various serious disease states. Diagnosing and monitoring such diseases in blood plasma of affected individuals has typically been conducted by use of enzyme-linked immunosorbent assays, which using a specific antibody quantitatively measure only the affected protein in the tested plasma samples. The discovery of protein biomarkers in plasma for diseases with no known correlations to genetic mutations is challenging. It requires a highly parallel display and quantitation strategy for proteins. We fractionated blood serum proteins prior to display on two-dimensional electrophoresis (2-DE) gels using immunoaffinity chromatography to remove the most abundant serum proteins, followed by sequential anion-exchange and size-exclusion chromatography. Serum proteins from 74 fractions were displayed on 2-DE gels. This approach succeeded in resolving approximately 3700 distinct protein spots, many of them post-translationally modified variants of plasma proteins. About 1800 distinct serum protein spots were identified by mass spectrometry. They collapsed into 325 distinct proteins, after sequence homology and similarity searches were carried out to eliminate redundant protein annotations. Although a relatively insensitive dye, Coomassie Brilliant Blue G-250, was used to visualize protein spots, several proteins known to be present in serum in < 10 ng/mL concentrations were identified such as interleukin-6, cathepsins, and peptide hormones. Considering that our strategy allows highly parallel protein quantitation on 2-DE gels, it holds promise to accelerate the discovery of novel serum protein biomarkers.  相似文献   
13.
Current studies investigating properties of nanoparticle-reinforced polymers have shown that nanocomposites often exhibit improved properties compared to neat polymers. However, over two decades of research, using both experimental studies and modeling analyses, has not fully elucidated the mechanistic underpinnings behind these enhancements. Moreover, few studies have focused on developing an understanding among two or more polymer properties affected by incorporation of nanomaterials. In our study, we investigated the elastic and thermal properties of poly(acrylamide) hydrogels containing silica nanoparticles. Both nanoparticle concentration and size affected hydrogel properties, with similar trends in enhancements observed for elastic modulus and thermal diffusivity. We also observed significantly lower swellability for hydrogel nanocomposites relative to neat hydrogels, consistent with previous work suggesting that nanoparticles can mediate pseudo crosslinking within polymer networks. Collectively, these results indicate the ability to develop next-generation composite materials with enhanced mechanical and thermal properties by increasing the average crosslinking density using nanoparticles.  相似文献   
14.
Use of sustainable chemistry to produce an acyl amino acid surfactant   总被引:1,自引:0,他引:1  
Surfactants find wide commercial use as foaming agents, emulsifiers, and dispersants. Currently, surfactants are produced from petroleum, or from seed oils such as palm or coconut oil. Due to concerns with CO2 emissions and the need to protect rainforests, there is a growing necessity to manufacture these chemicals using sustainable resources In this report, we describe the engineering of a native nonribosomal peptide synthetase pathway (i.e., surfactin synthetase), to generate a Bacillus strain that synthesizes a highly water-soluble acyl amino acid surfactant, rather than the water insoluble lipopeptide surfactin. This novel product has a lower CMC and higher water solubility than myristoyl glutamate, a commercial surfactant. This surfactant is produced by fermentation of cellulosic carbohydrate as feedstock. This method of surfactant production provides an approach to sustainable manufacturing of new surfactants.  相似文献   
15.
An oscillator theory of motor unit recruitment   总被引:1,自引:0,他引:1  
The phenomenon of systematic recruitment of motor units with increasing demand load is usually explained by the size principle. Though this principle successfully explains the gain-related aspects of muscle force generation, it does not address the need for desynchronization of motor unit activities in order to produce a smooth tension profile at the level of whole muscle, while individual muscle fibers are "twitching." We propose an oscillator model of motor neurons in which a pool of motor neurons fires a bundle of muscle fibers. Although individual muscle fibers have a complicated tension profile, the tension produced by the entire bundle is regulated and follows a command signal accurately. This is shown to be possible because of uncorrelated activity produced by local inhibitory connections among motor neurons. Connections that produce synchronized oscillations result in uncontrolled contractions of the muscle. These results seem to suggest that while synchronized activity indicates pathology and disease, desynchronized activity is the precondition for normal muscle function. Physiological evidence for the proposed theory of motor unit synchronization is presented.  相似文献   
16.
17.
2-((4-(1-[(11)C]Methyl-4-(pyridin-4-yl)-1H-pyrazol-3-yl)phenoxy)methyl)-quinoline (MP-10), a specific PDE10A inhibitor (IC(50)=0.18 nM with 100-fold selectivity over other PDEs), was radiosynthesized by alkylation of the desmethyl precursor with [(11)C]CH(3)I, ~45% yield, >92% radiochemical purity, >370 GBq/μmol specific activity at end of bombardment (EOB). Evaluation in Sprague-Dawley rats revealed that [(11)C]MP-10 had highest brain accumulation in the PDE10A enriched-striatum, the 30 min striatum: cerebellum ratio reached 6.55. MicroPET studies of [(11)C]MP-10 in monkeys displayed selective uptake in striatum. However, a radiolabeled metabolite capable of penetrating the blood-brain-barrier may limit the clinical utility of [(11)C]MP-10 as a PDE10A PET tracer.  相似文献   
18.
In this report the effect of hydrogen peroxide (H2O2) on peroxidase (POD) activity during leaf senescence was studied with and without phenylmethylsulfonyl fluoride (PMSF) pre-treatment in detached neem (Azadirachta indica A. juss) leaf chloroplasts. Increased POD activity was detected in natural and H2O2-promoted senescent leaf chloroplasts compared to untreated control mature green leaf chloroplasts. However, under H2O2 POD activity markedly increased at 1 day, and then significantly decreased until 4 days. In the presence of H2O2, PMSF, the induction of POD activity was alleviated at 1 day, whereas reduced after 4 days. In contrast, in the presence of H2O2, cycloheximide (CX), the induction of POD activity was reduced at 1 day, whereas alleviated after 4 days. The was a partial reduction in H2O2-induced POD activity with PMSF and CX, indicating the presence of pre-existing inactive PODs in chloroplasts. We also propose a new role for chloroplastidial proteases as activators of pre-existing inactive PODs during leaf senescence.Key words: chloroplast, leaf senescence, peroxidase, protease  相似文献   
19.
Large RNAs collapse into compact intermediates in the presence of counterions before folding to the native state. We previously found that collapse of a bacterial group I ribozyme correlates with the formation of helices within the ribozyme core, but occurs at Mg2+ concentrations too low to support stable tertiary structure and catalytic activity. Here, using small-angle X-ray scattering, we show that Mg2+-induced collapse is a cooperative folding transition that can be fit by a two-state model. The Mg2+ dependence of collapse is similar to the Mg2+ dependence of helix assembly measured by partial ribonuclease T1 digestion and of an unfolding transition measured by UV hypochromicity. The correspondence between multiple probes of RNA structure further supports a two-state model. A mutation that disrupts tertiary contacts between the L9 tetraloop and its helical receptor destabilized the compact state by 0.8 kcal/mol, while mutations in the central triplex were less destabilizing. These results show that native tertiary interactions stabilize the compact folding intermediates under conditions in which the RNA backbone remains accessible to solvent.  相似文献   
20.
Strand separation is obligatory for several DNA functions, including replication. However, local DNA properties such as A+T content or thermodynamic stability alone do not determine the susceptibility to this transition in vivo. Rather, superhelical stresses provide long-range coupling among the transition behaviors of all base pairs within a topologically constrained domain. We have developed methods to analyze superhelically induced duplex destabilization (SIDD) in genomic DNA that take into account both this long-range stress-induced coupling and sequence-dependent local thermodynamic stability. Here we apply this approach to examine the SIDD properties of 39 experimentally well-characterized autonomously replicating DNA sequences (ARS elements), which function as replication origins in the yeast Saccharomyces cerevisiae. We find that these ARS elements have a strikingly increased susceptibility to SIDD relative to their surrounding sequences. On average, these ARS elements require 4.78 kcal/mol less free energy to separate than do their immediately surrounding sequences, making them more than 2,000 times easier to open. Statistical analysis shows that the probability of this strong an association between SIDD sites and ARS elements arising by chance is approximately 4 × 10−10. This local enhancement of the propensity to separate to single strands under superhelical stress has obvious implications for origin function. SIDD properties also could be used, in conjunction with other known origin attributes, to identify putative replication origins in yeast, and possibly in other metazoan genomes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号