排序方式: 共有184条查询结果,搜索用时 15 毫秒
11.
Abdullah Mahboob Serguei Vassiliev Prashanth K. Poddutoori Art van der Est Doug Bruce 《PloS one》2013,8(7)
Photosystem II (PSII) of photosynthesis has the unique ability to photochemically oxidize water. Recently an engineered bacterioferritin photochemical ‘reaction centre’ (BFR-RC) using a zinc chlorin pigment (ZnCe6) in place of its native heme has been shown to photo-oxidize bound manganese ions through a tyrosine residue, thus mimicking two of the key reactions on the electron donor side of PSII. To understand the mechanism of tyrosine oxidation in BFR-RCs, and explore the possibility of water oxidation in such a system we have built an atomic-level model of the BFR-RC using ONIOM methodology. We studied the influence of axial ligands and carboxyl groups on the oxidation potential of ZnCe6 using DFT theory, and finally calculated the shift of the redox potential of ZnCe6 in the BFR-RC protein using the multi-conformational molecular mechanics–Poisson-Boltzmann approach. According to our calculations, the redox potential for the first oxidation of ZnCe6 in the BRF-RC protein is only 0.57 V, too low to oxidize tyrosine. We suggest that the observed tyrosine oxidation in BRF-RC could be driven by the ZnCe6 di-cation. In order to increase the efficiency of tyrosine oxidation, and ultimately oxidize water, the first potential of ZnCe6 would have to attain a value in excess of 0.8 V. We discuss the possibilities for modifying the BFR-RC to achieve this goal. 相似文献
12.
The drug discovery process has been a crucial and cost-intensive process. This cost is not only monetary but also involves risks, time, and labour that are incurred while introducing a drug in the market. In order to reduce this cost and the risks associated with the drugs that may result in severe side effects, the in silico methods have gained popularity in recent years. These methods have had a significant impact on not only drug discovery but also the related areas such as drug repositioning, drug-target interaction prediction, drug side effect prediction, personalised medicine, etc. Amongst these research areas predicting interactions between drugs and targets forms the basis for drug discovery. The availability of big data in the form of bioinformatics, genetic databases, along with computational methods, have further supported data-driven decision-making. The results obtained through these methods may be further validated using in vitro or in vivo experiments. This validation step can further justify the predictions resulting from in silico approaches, further increasing the accuracy of the overall result in subsequent stages. A variety of approaches are used in predicting drug-target interactions, including ligand-based, molecular docking based and chemogenomic-based approaches. This paper discusses the chemogenomic methods, considering drug target interaction as a classification problem on whether or not an interaction between a particular drug and target would serve as a basis for understanding drug discovery/drug repositioning. We present the advantages and disadvantages associated with their application. 相似文献
13.
ABSTRACTFT-IR and FT-Raman spectra of 2,2′-bipyridine-3,3′-dicarboxylic acid (B3DA), 2,2′-bipyridine-4,4′-dicarboxylic acid (B4DA) and 2,2′-bipyridine-5,5′-dicarboxylic acid (B5DA) were recorded and analysed. The quantum chemical calculations of the title compounds begin with barrier potentials at different rotation angles around the C–C′ and C–Cα bonds in order to arrive conformation of lowest energy using DFT employing B3LYP functional with 6-311++G(d,p) basis set. This confirmation was further optimised to get the global minimum geometry. The vibrational frequencies along with IR, Raman intensities were computed, the rms error between observed and calculated frequencies were 11.2 cm?1, 10.2 cm?1 and 12.2 cm?1 for B3DA, B4DA, and B5DA. An 87-element modified valence force field is derived by solving the inverse vibrational problem using Wilson’s GF matrix method. This force field is refined using 163 observed fundamentals employing in overlay least-squares technique. The average error between computed and experimental frequencies was found as 12.85 cm?1 using potential energy distribution (PED) and eigenvectors. By using the gauge-independent atomic orbital (GIAO) method calculate the 1H and 13C NMR chemical shifts of the molecules and compared with experimental results. The first-order hyperpolarisability, HOMO and LUMO energies, molecular electrostatic potential (MESP) and natural orbital analysis (NBO) of titled compounds were evaluated using DFT. 相似文献
14.
15.
16.
Inactivation of nitrate reductase alters metabolic branching of carbohydrate fermentation in the cyanobacterium Synechococcus sp. strain PCC 7002 下载免费PDF全文
17.
Gatlin CL Pieper R Huang ST Mongodin E Gebregeorgis E Parmar PP Clark DJ Alami H Papazisi L Fleischmann RD Gill SR Peterson SN 《Proteomics》2006,6(5):1530-1549
The emergence of highly virulent community acquired Staphylococcus aureus and continued progression of resistance to multiple antimicrobials, including methicillin and vancomycin, marks the reemergence of S. aureus as a serious health care threat. Investigation of proteins localized to the cell surface could help to elucidate mechanisms of virulence and antibiotic resistance in S. aureus. In this study, proteomic profiling methods were developed to solubilize, display, and evaluate abundance levels of proteins present in the supernatants of the lysostaphin-digested cell envelope from cultured vancomycin-intermediate S. aureus (VISA) cells. Combining approaches of 2-DE or chromatographic separation of proteins with MS analyses resulted in the identification of 144 proteins of particular interest. Of these proteins, 48 contained predicted cell wall localization or export signal motifs, including 14 with distinct covalent peptidoglycan-anchor sites, four of which are uncharacterized to date. One of the two most abundant cell envelope proteins, which showed remarkably high variations in MW and pI in the 2-DE gel display, was the S. aureus surface protein G. The display of numerous secreted proteins that are not covalently cell wall-anchored, suggests that, in the exponential growth phase, secreted proteins can be retained physiologically in the cell envelope and may interact with cell wall-anchored proteins and carbohydrate structures in a manner yet to be determined. The remaining 96 proteins, devoid of recognizable motifs, were repeatedly profiled in the VISA cell envelope fractions. We describe a novel semiquantitative method to determine abundance factors of such proteins in 2-DE gels of cell envelope fractions relative to whole cell lysates and discuss these data in the context of true cell envelope localization versus experimentally caused cell lysis. 相似文献
18.
Srdan Verstovsek Jason Gotlib Ruben A. Mesa Alessandro M. Vannucchi Jean-Jacques Kiladjian Francisco Cervantes Claire N. Harrison Ronald Paquette William Sun Ahmad Naim Peter Langmuir Tuochuan Dong Prashanth Gopalakrishna Vikas Gupta 《Journal of hematology & oncology》2017,10(1):156
Background
Myelofibrosis (MF) is associated with a variety of burdensome symptoms and reduced survival compared with age-/sex-matched controls. This analysis evaluated the long-term survival benefit with ruxolitinib, a Janus kinase (JAK)1/JAK2 inhibitor, in patients with intermediate-2 (int-2) or high-risk MF.Methods
This was an exploratory analysis of 5-year data pooled from the phase 3 COMFORT-I and -II trials. In both trials, patients could cross over to ruxolitinib from the control group (COMFORT-I, placebo; COMFORT-II, best available therapy). All continuing patients in the control groups crossed over to ruxolitinib by the 3-year follow-up. Overall survival (OS; a secondary endpoint in both trials) was evaluated using pooled intent-to-treat data from patients randomized to ruxolitinib or the control groups. OS was also evaluated in subgroups stratified by baseline anemia and transfusion status at week 24.Results
A total of 528 patients were included in this analysis; 301 were originally randomized to ruxolitinib (COMFORT-I, n?=?155; COMFORT-II, n?=?146) and 227 to control (n?=?154 and n?=?73, respectively). The risk of death was reduced by 30% among patients randomized to ruxolitinib compared with patients in the control group (median OS, 5.3 vs 3.8 years, respectively; hazard ratio [HR], 0.70 [95% CI, 0.54–0.91]; P?=?0.0065). After correcting for crossover using a rank-preserving structural failure time (RPSFT) method, the OS advantage was more pronounced for patients who were originally randomized to ruxolitinib compared with patients who crossed over from control to ruxolitinib (median OS, 5.3 vs 2.3 years; HR [ruxolitinib vs RPSFT], 0.35 [95% CI, 0.23–0.59]). An analysis of OS censoring patients at the time of crossover also demonstrated that ruxolitinib prolonged OS compared with control (median OS, 5.3 vs 2.4 years; HR [ruxolitinib vs censored at crossover], 0.53 [95% CI, 0.36–0.78]; P?=?0.0013). The survival benefit with ruxolitinib was observed irrespective of baseline anemia status or transfusion requirements at week 24.Conclusions
These findings support ruxolitinib treatment for patients with int-2 or high-risk MF, regardless of anemia or transfusion status. Further analyses will be important for exploring ruxolitinib earlier in the disease course to assess the effect on the natural history of MF.19.
The rapid growth of the embryo places severe demands on the ability of the cardiovascular system to deliver oxygen to cells. To meet this need, erythroid progenitors rapidly expand in the fetal liver microenvironment such that by E14.5, erythropoiesis predominates in the fetal liver. In this report we show that the BMP4/Smad5 dependent stress erythropoiesis pathway plays a key role in the expansion of erythroid progenitors in the fetal liver. These data show that the fetal liver contains two populations of erythroid progenitors. One population resembles the steady state erythroid progenitors found in the adult bone marrow. While the second population exhibits the properties of stress erythroid progenitors found in adult spleen. Here we demonstrate that defects in BMP4/Smad5 signaling preferentially affect the expansion of the stress erythroid progenitors in the fetal liver leading to fetal anemia. These data suggest that steady state erythropoiesis is unable to generate sufficient erythrocytes to maintain the rapid growth of the embryo leading to the induction of the BMP4 dependent stress erythropoiesis pathway. These observations underscore the similarities between fetal erythropoiesis and stress erythropoiesis. 相似文献
20.
Naeela Qureshi Pakeerathan Kandiah Mesfin Kebede Gessese Vallence Nsabiyera Vanessa Wells Prashanth Babu Debbie Wong Matthew Hayden Harbans Bariana Urmil Bansal 《Molecular breeding : new strategies in plant improvement》2018,38(8):97
Stem rust of wheat, caused by Puccinia graminis f. sp. tritici (Pgt), is a threat to global food security due to its ability to cause total crop failures. The Pgt race TTKSK (Ug99) and its derivatives detected in East Africa carry virulence for many resistance genes present in modern cultivars. However, stem rust resistance gene Sr26 remains effective to all races of Pgt worldwide. Sr26 is carried on the Agropyron elongatum (syn. Thinopyrum ponticum) segment 6Ae#1L translocated to chromosome 6AL of wheat. In this study, a recombinant inbred line (RIL) population derived from a cross between the landrace Aus27969 and Avocet S, which carries Sr26, was used to develop co-dominant kompetitive allele-specific polymerase chain reaction (KASP) markers that co-segregate with Sr26. Four KASP markers (sunKASP_216, sunKASP_218, sunKASP_224 and sunKASP_225) were also shown to co-segregate with Sr26 in four additional RIL populations. When tested on Australian cultivars and breeding lines, these markers amplified alleles alternate to that linked with Sr26 in all cultivars known to lack this gene and Sr26-linked alleles in cultivars and genotypes known to carry Sr26. Genotypes WA-1 and WA-1/3*Yitpi carrying the shortest Sr26 translocation segment were positive only for markers sunKASP_224 and sunKASP_225. Our results suggest the four KASP markers are located on the original translocation and sunKASP_224 and sunKASP_225 are located on the shortened version. Therefore, sunKASP_224 and sunKASP_225 can be used for marker-assisted pyramiding of Sr26 with other stem rust resistance genes to achieve durable resistance in wheat. 相似文献