首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1430篇
  免费   98篇
  国内免费   1篇
  2023年   14篇
  2022年   28篇
  2021年   51篇
  2020年   16篇
  2019年   24篇
  2018年   42篇
  2017年   39篇
  2016年   54篇
  2015年   101篇
  2014年   75篇
  2013年   122篇
  2012年   157篇
  2011年   104篇
  2010年   64篇
  2009年   70篇
  2008年   64篇
  2007年   71篇
  2006年   63篇
  2005年   56篇
  2004年   35篇
  2003年   44篇
  2002年   41篇
  2001年   17篇
  2000年   17篇
  1999年   10篇
  1998年   8篇
  1995年   3篇
  1994年   5篇
  1993年   4篇
  1992年   9篇
  1991年   7篇
  1990年   5篇
  1989年   10篇
  1988年   6篇
  1987年   4篇
  1986年   6篇
  1985年   4篇
  1984年   5篇
  1982年   7篇
  1981年   3篇
  1980年   3篇
  1979年   6篇
  1978年   7篇
  1976年   5篇
  1975年   3篇
  1974年   8篇
  1973年   9篇
  1971年   3篇
  1970年   3篇
  1965年   3篇
排序方式: 共有1529条查询结果,搜索用时 15 毫秒
981.
982.
Stoned     
The stoned proteins, stoned A (STNA) and stoned B (STNB), are essential for normal vesicle trafficking in Drosophila melanogaster neurons, and deletion of the stoned locus is lethal. Although there is a growing body of research aimed at defining the roles of these proteins, particularly for STNB where homologues have now been identified in all multicellular species, their functions and mechanisms of action are not yet established. The two proteins are structurally unrelated, consistent with two distinct cellular functions. The evidence suggests a critical requirement for stoned proteins in recycling/regulation or specification of a competent synaptic vesicle pool. As stoned proteins may be specific to a particular pathway of endocytosis, studies of their function are likely to be valuable in distinguishing between the different mechanisms of membrane retrieval and their respective contributions to synaptic vesicle recycling, a subject of considerable scientific debate. In this review, we examine the published literature on stoned and comment on the available data, conclusions from these analyses and how they may relate to alternative models of vesicle cycling.  相似文献   
983.
Neuropeptide Y (NPY) Y1 receptors are implicated in CNS regulation of food intake, but their role in hypoglycemic hyperphagia remains unclear. The present studies utilized a pharmacological approach to investigate the hypothesis that NPY acts via Y1 receptor-dependent mechanisms to regulate feeding and blood glucose profiles during intermediate insulin-induced hypoglycemia. Groups of ovariectomized, estradiol benzoate-treated female rats were injected subcutaneously with one or four doses of neutral protamine Hagedorn insulin (NPH), on as many days, or with diluent alone. Before final treatments on day four, the animals were pretreated by intracerebroventricular (icv) delivery of the NPY Y1 receptor antagonist, 1229U91, or the vehicle, artificial cerebrospinal fluid (acsf). Food intake during acute hypoglycemia was significantly diminished between to and + 2 h in animals pretreated with the Y1 receptor antagonist versus vehicle. Administration of 1229U91 prior to the fourth of four NPH doses suppressed hypoglycemic hyperphagia over a relatively longer interval, e.g. 4 h, after to relative to the acute insulin group. Blood glucose levels after a single NPH injection were similar in acsf- and antagonist-pretreated rats at + 2, + 4, and + 6 h, but were lower at + 9 h in the latter group. Pretreatment with 1229U91 did not modify glucose profiles between + 2 and + 9 h after multiple dosing with NPH, but prevented recovery from hypoglycemia at + 12 h. The present results show that central NPY Y1 receptor antagonism inhibits hypoglycemic hyperphagia, and that this suppressive effect on feeding was of greater duration during recurring hypoglycemia. The data also show that Y1 receptor blockade decreases glycemic responses to both single and serial NPH dosing, albeit at different post-injection time points. The current studies support the view that NPY Y1 receptors function within central neural pathways that govern feeding and glycemic responses to intermediate-acting insulin, and that Y1 receptor-mediated stimulation of food intake may habituate in a positive manner to repetitive insulin-induced hypoglycemia. Further research is needed to evaluate the impact of chronic insulin-induced hypoglycemia on neuropeptide Y neurotransmission and Y1 receptor expression within regulatory circuitries that control food intake and glucostasis.  相似文献   
984.
The lipA gene, a structural gene encoding for protein of molecular mass 48 kDa, and lipB gene, encoding for a lipase-specific chaperone with molecular mass of 35 kDa, of Pseudomonas aeruginosa B2264 were co-expressed in heterologous host Escherichia coli BL21 (DE3) to obtain in vivo expression of functional lipase. The recombinant lipase was expressed with histidine tag at its N terminus and was purified to homogeneity using nickel affinity chromatography. The amino acid sequence of LipA and LipB of P. aeruginosa B2264 was 99–100% identical with the corresponding sequence of LipA and LipB of P. aeruginosa LST-03 and P. aeruginosa PA01, but it has less identity with Pseudomonas cepacia (Burkholderia cepacia) as it showed only 37.6% and 23.3% identity with the B. cepacia LipA and LipB sequence, respectively. The molecular mass of the recombinant lipase was found to be 48 kDa. The recombinant lipase exhibited optimal activity at pH 8.0 and 37°C, though it was active between pH 5.0 and pH 9.0 and up to 45°C. K m and V max values for recombinant P. aeruginosa lipase were found to be 151.5 ± 29 μM and 217 ± 22.5 μmol min−1 mg−1 protein, respectively.  相似文献   
985.
AmpC is a group I, class C -lactamase present in most Enterobacteriaceae and in Pseudomonas aeruginosa and other nonfermenting gram-negative bacilli. The β-lactam class of antibiotics is one of the most important structural classes of antibacterial compounds and act by inhibiting the bacterial D ,D - transpeptidases that are responsible for the final step of peptidoglycan cross-linking. Our main aim in the study is to screen possible inhibitors against AmpC / β - lactamase (an enzyme responsible for antimicrobial activity in Pseudomonas aeruginosa), through virtual screening of 1364 NCI (National Cancer Institute) diversity set II compounds. Homology Model of AmpC / β - lactamase was constructed using MODELLER and the Model was validated using PROCHECK and Verify 3D programs to obtain a stable structure, which was further used for virtual screening of NCI (National Cancer Institute) diversity set II compounds through molecular Docking studies using Autodock. The amino acid sequence of the β - lactamase was also subjected to ScanProsite web server to find any pattern present in the sequence. After the prediction of 3-dimensional model of AmpC/ β-lactamase, the possible Active sites ofβ - lactamase were determined using LIGSITE(csc) and CastP web servers simultaneously. The Docked complexes were validated and Enumerated based on the Autodock Scoring function to pick out the best inhibitor based on Autodock energy score. Thus from the entire 1364 NCI diversity set II compounds which were Docked, the best four docking solutions were selected (ZINC12670903, ZINC17465965, ZINC11681166 and ZINC13099024). Further the Complexes were analyzed through LIGPLOT for their interaction for the 4 best docked NCI diversity set II compounds. Thus from the Complex scoring and binding ability it is deciphered that these NCI diversity set II compounds could be promising inhibitors for Pseudomonas aeruginosa using AmpC /β - lactamase as Drug target yet pharmacological studies have to confirm it.  相似文献   
986.
Mali P  Wirtz D  Searson PC 《Biophysical journal》2010,99(11):3526-3534
Upon cortical retraction in mitosis, mammalian cells have a dramatically decreased physical association with their environment. Hence, mechanisms that prevent mitotic detachment and ensure appropriate positioning of the resulting daughter cells are critical for effective tissue morphogenesis and repair, and are the subject of this study. We find that, unlike low-motility cells, highly motile cells spread isotropically upon division and do not typically reoccupy their mother-cell footprint, and often even disseminate their mitotic cells. To elucidate these different motility-based phenotypes, we investigated their partial recapitulation and rescue using defined molecular perturbations. We show that activated RhoA is localized at the mitotic cell cortex, and Rho-associated kinase inhibition increases the degree of reoccupation of the mother-cell outline in highly motile cells. Conversely, we show that induction of motility in low-motility cells by RasV12 overexpression results in increased isotropic daughter-cell spreading. We thus propose that a balance between cortical retraction forces, which depend in part on RhoA activation, and substrate adhesion forces, which diminish with increasing motility rates, governs the integrity of mitotic actin retraction fibers and influences subsequent daughter-cell spreading. This balance of forces during mitosis has implications for cancer metastasis.  相似文献   
987.
Actinomycetes, the soil borne bacteria which exhibit filamentous growth, are known for their ability to produce a variety of secondary metabolites including antibiotics. Industrial scale production of such antibiotics is typically carried out in a multi‐substrate medium where the product formation may experience catabolite repression by one or more of the substrates. Availability of reliable process models is a key bottleneck in optimization of such processes. Here we present a structured kinetic model to describe the growth, substrate uptake and product formation for the glycopeptide antibiotic producer strain Amycolatopsis balhimycina DSM5908. The model is based on the premise that the organism is an optimal strategist and that the various metabolic pathways are regulated via key rate limiting enzymes. Further, the model accounts for substrate inhibition and catabolite repression. The model is also able to predict key phenomena such as simultaneous uptake of glucose and glycerol but with different specific uptake rates, and inhibition of glycopeptide production by high intracellular phosphate levels. The model is successfully applied to both production and seed medium with varying compositions and hence has good predictive ability over a variety of operating conditions. The model parameters are estimated via a well‐designed experimental plan. Adequacy of the proposed model was established via checking the model sensitivity to its parameters and confidence interval calculations. The model may have applications in optimizing seed transfer, medium composition, and feeding strategy for maximizing production. Biotechnol. Bioeng. 2010;105: 109–120. © 2009 Wiley Periodicals, Inc.  相似文献   
988.
989.
The aim of the study was to determine the effect of the elements of the extract of seed from Emblica officinalis on antioxidant enzymes and osmotic fragility of erythrocytes membrane in normal as well as streptozotocin-induced severely diabetic albino Wister rats. The results revealed that the untreated diabetic rats exhibited increase in oxidative stress as indicated by significantly diminished activities of free radical scavenging enzymes such as catalase (CAT) and superoxide dismutase (SOD) by 37.5% (p < 0.001) and 18.6% (p < 0.01), respectively. However, the E. officinalis seed extract treatment showed marked improvements in CAT and SOD activities by 47.09% (p < 0.001) and 21.61% (p < 0.001), respectively. The enhanced lipid peroxidation by 30.87% (p < 0.001) in erythrocytes of untreated diabetic rats was significantly accentuated in the extract treated animals by 23.72% (p < 0.001). The erythrocytes showed increased osmotic fragility due to diabetes in terms of hemolysis. It attained the normal level in diabetic treated group. The findings thus suggest that E. officinalis seed extract has the potential to be exploited as an agent to boost the antioxidant system in the diabetic animal model. Laser-induced breakdown spectroscopy has been used as an analytical tool to detect major and minor elements like Mg, Fe, Na, K, Zn, Ca, H, O, C, and N present in the extract. The higher concentration of Ca (II), Mg (II) and Fe (II) as reflected by their intensities are responsible for the antioxidant potential of E. officinalis.  相似文献   
990.
Background & ObjectivesCigarette smoke is associated with several diseased states including defects in reproductive behavior. Salvadora persica (S. persica) known as the toothbrush plant is reported to possess several pharmacological properties including antidepressants and anxiolytics. The present research was done to determine the libido-protective effect of S. persica in chronic cigarette smoke-exposed rats.Materials and MethodsThe decoction of freshly dried roots of S. persica (50, 100, and 200 mg/kg, oral) was administered to the chronic-cigarette smoke-exposed adult rats. The parameters related to libido were recorded using a close-camera circuit (CCTV). Serum corticosterone and testosterone levels were estimated. Further, the phytochemical constituents were identified in the decoction. The data obtained were analyzed using one-way analysis of variance and significance was considered at p < 0.05.ResultsThe observation from the study revealed that cigarette smoke exposure reduces the sexual activity parameters significantly (p < 0.01), besides elevated the serum corticosterone and suppressed the testosterone levels in rats. Administration of S. persica at 200 mg/kg improved significantly (p < 0.05) the parameters related to libido. The decoction also reversed the changes in the levels of tested hormones in serum.Interpretation and ConclusionThe findings indicate that a 200 mg/kg S. persica decoction can protect libido in chronic cigarette smoke-exposed rats. The activity may be due to the presence of several phytoconstituents such as alkaloid, flavonoids and phytosterols that might produce vasodilatory effect in sex organs and enhance the synthesis of endogenous testosterone to improve libido characteristics weakened by chronic cigarette smoke exposure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号