首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1426篇
  免费   98篇
  国内免费   1篇
  2023年   14篇
  2022年   24篇
  2021年   51篇
  2020年   16篇
  2019年   24篇
  2018年   42篇
  2017年   39篇
  2016年   54篇
  2015年   101篇
  2014年   75篇
  2013年   122篇
  2012年   157篇
  2011年   104篇
  2010年   64篇
  2009年   70篇
  2008年   64篇
  2007年   71篇
  2006年   63篇
  2005年   56篇
  2004年   35篇
  2003年   44篇
  2002年   41篇
  2001年   17篇
  2000年   17篇
  1999年   10篇
  1998年   8篇
  1995年   3篇
  1994年   5篇
  1993年   4篇
  1992年   9篇
  1991年   7篇
  1990年   5篇
  1989年   10篇
  1988年   6篇
  1987年   4篇
  1986年   6篇
  1985年   4篇
  1984年   5篇
  1982年   7篇
  1981年   3篇
  1980年   3篇
  1979年   6篇
  1978年   7篇
  1976年   5篇
  1975年   3篇
  1974年   8篇
  1973年   9篇
  1971年   3篇
  1970年   3篇
  1965年   3篇
排序方式: 共有1525条查询结果,搜索用时 312 毫秒
971.

Background

Copy number variants (CNVs) have been identified in several studies to be associated with complex diseases. It is important, therefore, to understand the distribution of CNVs within and among populations. This study is the first report of a CNV map in African Americans.

Results

Employing a SNP platform with greater than 500,000 SNPs, a first-generation CNV map of the African American genome was generated using DNA from 385 healthy African American individuals, and compared to a sample of 435 healthy White individuals. A total of 1362 CNVs were identified within African Americans, which included two CNV regions that were significantly different in frequency between African Americans and Whites (17q21 and 15q11). In addition, a duplication was identified in 74% of DNAs derived from cell lines that was not present in any of the whole blood derived DNAs.

Conclusion

The Affymetrix 500 K array provides reliable CNV mapping information. However, using cell lines as a source of DNA may introduce artifacts. The duplication identified in high frequency in Whites and low frequency in African Americans on chromosome 17q21 reflects haplotype specific frequency differences between ancestral groups. The generation of the CNV map will be a valuable tool for identifying disease associated CNVs in African Americans.  相似文献   
972.
Verification of candidate biomarkers requires specific assays to selectively detect and quantify target proteins in accessible biofluids. The primary objective of verification is to screen potential biomarkers to ensure that only the highest quality candidates from the discovery phase are taken forward into preclinical validation. Because antibody reagents for a clinical grade immunoassay often exist for a small number of candidates, alternative methodologies are required to credential new and unproven candidates in a statistically viable number of serum or plasma samples. Using multiple reaction monitoring coupled with stable isotope dilution MS, we developed quantitative, multiplexed assays in plasma for six proteins of clinical relevance to cardiac injury. The process described does not require antibodies for immunoaffinity enrichment of either proteins or peptides. Limits of detection and quantitation for each signature peptide used as surrogates for the target proteins were determined by the method of standard addition using synthetic peptides and plasma from a healthy donor. Limits of quantitation ranged from 2 to 15 ng/ml for most of the target proteins. Quantitative measurements were obtained for one to two signature peptides derived from each target protein, including low abundance protein markers of cardiac injury in the nanogram/milliliter range such as the cardiac troponins. Intra- and interassay coefficients of variation were predominantly <10 and 25%, respectively. The configured multiplex assay was then used to measure levels of these proteins across three time points in six patients undergoing alcohol septal ablation for hypertrophic obstructive cardiomyopathy. These results are the first demonstration of a multiplexed, MS-based assay for detection and quantification of changes in concentration of proteins associated with cardiac injury in the low nanogram/milliliter range. Our results also demonstrate that these assays retain the necessary precision, reproducibility, and sensitivity to be applied to novel and uncharacterized candidate biomarkers for verification of proteins in blood.Discovery of disease-specific biomarkers with diagnostic and prognostic utility has become an important challenge in clinical proteomics. In general, unbiased discovery experiments often result in the confident identification of thousands of proteins, hundreds of which may vary significantly between case and control samples in small discovery studies. However, because of the stochastic sampling of proteomes in discovery “omics” experiments, a large fraction of the protein biomarkers “discovered” in these experiments are false positives arising from biological or technical variability. Clearly discovery omics experiments do not lead to biomarkers of immediate clinical utility but rather produce candidates that must be qualified and verified in larger sample sets than were used for discovery (1).Traditional, clinical validation of biomarkers has relied primarily on immunoassays because of their specificity and sensitivity for the target analyte and high throughput capability. However, antibody reagents for a clinical grade immunoassay often only exist for a short list of candidates. The development of a reliable sandwich immunoassay for one target protein is expensive, has a long development time, and is dependent upon the generation of high quality protein antibodies. For the large majority of new, unproven candidate biomarkers, an intermediate verification technology is required that has shorter assay development time lines, lower assay cost, and effective multiplexing of dozens of candidates in low sample volumes. Ideally the approach should be capable of analyzing hundreds of samples of serum or plasma with good precision. The desired outcome of verification is a small number of highly credentialed candidates suitable for traditional preclinical and clinical validation studies.Multiple reaction monitoring (MRM)1 coupled with stable isotope dilution (SID) MS has recently been shown to be well suited for direct quantification of proteins in plasma (24) and has emerged as the core technology for candidate biomarker verification. MRM assays can be highly multiplexed such that a moderate number of candidate proteins (in the range of 10–50) can be simultaneously targeted and measured in the statistically viable number of patient samples required for verification (hundreds of serum samples). However, sensitivity for unambiguous detection and quantification of proteins by MS-based assays is often constrained by sample complexity, particularly when the measurements are being made in complex fluids such as plasma.Many biomarkers of current clinical importance, such as prostate-specific antigen and the cardiac troponins, reside in the low nanogram/milliliter range in plasma and, until recently, have been inaccessible by non-antibody approaches. Our laboratory has recently shown for the first time that a combination of abundant protein depletion with limited fractionation at the peptide level prior to SID-MRM-MS provides robust limits of quantitation (LOQs) in the 1–20 ng/ml range with coefficient of variation (CV) of 10–20% at the LOQ for proteins in plasma (3).Here we demonstrate that this work flow can be extended to configure assays for a number of known markers of cardiovascular disease and, more importantly, can be deployed to measure their concentrations in clinical samples. We modeled a verification study comprising six patients undergoing alcohol septal ablation treatment for hypertrophic obstructive cardiomyopathy, a human model of “planned” myocardial infarction (PMI), and obtained targeted, quantitative measurements for moderate to low concentrations of cardiac biomarkers in plasma. This work provides additional evidence that MS-based assays can be configured and applied to verification of new protein targets for which high quality antibody reagents are not available.  相似文献   
973.
Industrial fermentations conducted in a batch or semi-batch mode demonstrate significant batch-to-batch variability. Current batch process monitoring strategies involve manual interpretation of highly informative but low frequency offline measurements such as concentrations of products, biomass and substrates. Fermentors are also fitted with computer interfaced instrumentation, enabling high frequency online measurements of several variables and automated techniques which can utilize this data would be desirable. Evolution of a batch fermentation, which typically uses complex medium, can be conceptualized as a sequence of several distinct metabolic phases. Monitoring of batch processes can then be achieved by detecting the phase change events, also termed as singular points (SP). In this work, we propose a novel moving window based real-time monitoring strategy for SP detection based only on online measurements. The key hypothesis of the strategy is that the statistical properties of the online data undergo a significant change around an SP. The strategy is easily implementable and does not require past data or prior knowledge of the number or time of occurrence of SPs. The efficacy of the proposed approach has been demonstrated to be superior compared to that of reported techniques for industrially relevant model organisms. The proposed approach can be used to decide offline sampling timings in real time.  相似文献   
974.
Proline hydroxylation is an important phenomenon of a living cell. Prolyl-4-hydroxylases (P4H) responsible for this process have been characterized from animals, and one of its forms, HIF-P4H, is regarded as an oxygen sensor. In plants, P4H has been partially characterized from few species, and one of the Arabidopsis P4H (AtP4H1) has been shown to hydroxylate proline-rich peptides in vitro. In order to study its function in planta, we have overexpressed AtP4H1 in Arabidopsis. The AtP4H1oexp plants showed hypoxia-in-normoxia phenotype with strict requirement for carbon source for its growth, increased root hair, absence of trichome, and reduction in seed size. Genome-wide expression analyses suggest that expression of several genes related to hypoxia as well as plant growth and development are upregulated in AtP4H1oexp lines. Based on our studies on AtP4H1oexp lines, we speculate a direct role of AtP4H1 in hypoxia stress and in different stages of plant growth and development.  相似文献   
975.
Syndapins belong to the F-BAR domain protein family whose predicted functions in membrane tubulation remain poorly studied in vivo. At Drosophila neuromuscular junctions, syndapin is associated predominantly with a tubulolamellar postsynaptic membrane system known as the subsynaptic reticulum (SSR). We show that syndapin overexpression greatly expands this postsynaptic membrane system. Syndapin can expand the SSR in the absence of dPAK and Dlg, two known regulators of SSR development. Syndapin's N-terminal F-BAR domain, required for membrane tubulation in cultured cells, is required for SSR expansion. Consistent with a model in which syndapin acts directly on postsynaptic membrane, SSR expansion requires conserved residues essential for membrane binding in vitro. However, syndapin's Src homology (SH) 3 domain, which negatively regulates membrane tubulation in cultured cells, is required for synaptic targeting and strong SSR induction. Our observations advance knowledge of syndapin protein function by 1) demonstrating the in vivo relevance of membrane remodeling mechanisms suggested by previous in vitro and structural analyses, 2) showing that SH3 domains are necessary for membrane expansion observed in vivo, and 3) confirming that F-BAR proteins control complex membrane structures.  相似文献   
976.
Pseudomonas putida CBB5 was isolated from soil by enrichment on caffeine. This strain used not only caffeine, theobromine, paraxanthine, and 7-methylxanthine as sole carbon and nitrogen sources but also theophylline and 3-methylxanthine. Analyses of metabolites in spent media and resting cell suspensions confirmed that CBB5 initially N demethylated theophylline via a hitherto unreported pathway to 1- and 3-methylxanthines. NAD(P)H-dependent conversion of theophylline to 1- and 3-methylxanthines was also detected in the crude cell extracts of theophylline-grown CBB5. 1-Methylxanthine and 3-methylxanthine were subsequently N demethylated to xanthine. CBB5 also oxidized theophylline and 1- and 3-methylxanthines to 1,3-dimethyluric acid and 1- and 3-methyluric acids, respectively. However, these methyluric acids were not metabolized further. A broad-substrate-range xanthine-oxidizing enzyme was responsible for the formation of these methyluric acids. In contrast, CBB5 metabolized caffeine to theobromine (major metabolite) and paraxanthine (minor metabolite). These dimethylxanthines were further N demethylated to xanthine via 7-methylxanthine. Theobromine-, paraxanthine-, and 7-methylxanthine-grown cells also metabolized all of the methylxanthines mentioned above via the same pathway. Thus, the theophylline and caffeine N-demethylation pathways converged at xanthine via different methylxanthine intermediates. Xanthine was eventually oxidized to uric acid. Enzymes involved in theophylline and caffeine degradation were coexpressed when CBB5 was grown on theophylline or on caffeine or its metabolites. However, 3-methylxanthine-grown CBB5 cells did not metabolize caffeine, whereas theophylline was metabolized at much reduced levels to only methyluric acids. To our knowledge, this is the first report of theophylline N demethylation and coexpression of distinct pathways for caffeine and theophylline degradation in bacteria.Caffeine (1,3,7-trimethylxanthine) and related methylxanthines are widely distributed in many plant species. Caffeine is also a major human dietary ingredient that can be found in common beverages and food products, such as coffee, tea, and chocolates. In pharmaceuticals, caffeine is used generally as a cardiac, neurological, and respiratory stimulant, as well as a diuretic (3). Hence, caffeine and related methylxanthines enter soil and water easily through decomposed plant materials and other means, such as effluents from coffee- and tea-processing facilities. Therefore, it is not surprising that microorganisms capable of degrading caffeine have been isolated from various natural environments, with or without enrichment procedures (3, 10). Bacteria use oxidative and N-demethylating pathways for catabolism of caffeine. Oxidation of caffeine by a Rhodococcus sp.-Klebsiella sp. mixed-culture consortium at the C-8 position to form 1,3,7-trimethyluric acid (TMU) has been reported (8). An 85-kDa, flavin-containing caffeine oxidase was purified from this consortium (9). Also, Mohapatra et al. (12) purified a 65-kDa caffeine oxidase from Alcaligenes sp. strain CF8. Cells of a caffeine-degrading Pseudomonas putida strain (ATCC 700097) isolated from domestic wastewater (13) showed a fourfold increase in a cytochrome P450 absorption spectrum signal compared to cells grown on glucose. Recently, we reported a novel non-NAD(P)+-dependent heterotrimeric caffeine dehydrogenase from Pseudomonas sp. strain CBB1 (20). This enzyme oxidized caffeine to TMU stoichiometrically and hydrolytically, without producing hydrogen peroxide. Further metabolism of TMU has not been elucidated.Several caffeine-degrading bacteria metabolize caffeine via the N-demethylating pathway and produce theobromine (3,7-dimethylxanthine) or paraxanthine (1,7-dimethylxanthine) as the initial product. Theophylline (1,3-dimethylxanthine) has not been reported to be a metabolite in bacterial degradation of caffeine. Subsequent N demethylation of theobromine or paraxanthine to xanthine is via 7-methyxanthine. Xanthine is further oxidized to uric acid by xanthine dehydrogenase/oxidase (3, 10). Although the identities of metabolites and the sequence of metabolite formation for caffeine N demethylation are well established, there is very little information on the number and nature of N-demethylases involved in this pathway.The lack of adequate information on the metabolism and enzymology of theophylline, caffeine, and related methylxanthines prompted us to investigate the degradation of these compounds in detail. We isolated a unique caffeine-degrading bacterium, P. putida CBB5, from soil via enrichment with caffeine as the sole source of carbon and nitrogen. Here we describe a detailed study of the metabolism of theophylline, caffeine, and related di- and monomethylxanthines by CBB5. Our results indicate that CBB5 initially N demethylated caffeine to produce theobromine (major product) and paraxanthine (minor product) before the pathways converged to 7-methylxanthine and xanthine. Surprisingly, CBB5 was also capable of utilizing theophylline as a sole carbon and nitrogen source. CBB5 N demethylated theophylline to 1-methylxanthine and 3-methylxanthine, which were further N demethylated to xanthine. Theophylline N-demethylase activity was detected in cell extracts prepared from theophylline-grown CBB5 cells. 1-Methylxanthine and 3-methylxanthine were detected as products of this NAD(P)H-dependent reaction. To our knowledge, this is the first report of a theophylline degradation pathway in bacteria and coexpression of distinct caffeine and theophylline degradation pathways.  相似文献   
977.
To analyze the role of cytosolic calcium in regulating heart beat frequency and rhythm, we studied conditional mutations in Drosophila Sarco-endoplasmic reticulum Ca2+-ATPase, believed to be predominantly responsible for sequestering free cytosolic calcium. Abnormalities in the amount or structure of the SERCA protein have been linked to cardiac malfunction in mammals. Drosophila SERCA protein (dSERCA) is highly enriched in Drosophila larval heart with a distinct membrane distribution of SERCA at cardiac Z-lines, suggesting evolutionarily conserved zones for calcium uptake into the sarcoplasmic reticulum. Heart beat frequency is strikingly reduced in mutant animals following dSERCA inactivation, (achieved by a brief exposure of these conditional mutants to non-permissive temperature). Cardiac contractions also show abnormal rhythmicity and electrophysiological recordings from the heart muscle reveal dramatic alterations in electrical activity. Overall, these studies underscore the utility of the Drosophila heart to model SERCA dysfunction dependent cardiac disorders and constitute an initial step towards developing Drosophila as a viable genetic model system to study conserved molecular determinants of cardiac physiology.  相似文献   
978.
Quantification of viable cells is a critical step in almost all biological experiments. Despite its importance, the methods developed so far to differentiate between viable and non-viable cells suffer from major limitations such as being time intensive, inaccurate and expensive. Here, we present a method to quantify viable cells based on reduction of methylene blue dye in cell cultures. Although the methylene blue reduction method is well known to check the bacterial load in milk, its application in the quantification of viable cells has not been reported. We have developed and standardized this method by monitoring the dye reduction rate at each time point for growth of Escherichia coli. The standard growth curve was monitored using this technique. The Methylene Blue dye Reduction Test (MBRT) correlates very well with Colony Forming Units (CFU) up to a 800 live cells as established by plating. The test developed is simple, accurate and fast (200 s) as compared to available techniques. We demonstrate the utility of the developed assay to monitor CFU rapidly and accurately for E. coli, Bacillus subtilis and a mixed culture of E. coli and B. subtilis. This assay, thus, has a wide applicability to all types of aerobic organisms.  相似文献   
979.
The study of free-living amoebae has proven valuable to explain the molecular mechanisms controlling phagocytosis, cell adhesion and motility. In this study, we identified a new adhesion molecule in Dictyostelium amoebae. The SibA (Similar to Integrin Beta) protein is a type I transmembrane protein, and its cytosolic, transmembrane and extracellular domains contain features also found in integrin beta chains. In addition, the conserved cytosolic domain of SibA interacts with talin, a well-characterized partner of mammalian integrins. Finally, genetic inactivation of SIBA affects adhesion to phagocytic particles, as well as cell adhesion and spreading on its substrate. It does not visibly alter the organization of the actin cytoskeleton, cellular migration or multicellular development. Our results indicate that the SibA protein is a Dictyostelium cell adhesion molecule presenting structural and functional similarities to metazoan integrin beta chains. This study sheds light on the molecular mechanisms controlling cell adhesion and their establishment during evolution.  相似文献   
980.
The impact of single dose mass drug administration of diethylcarbamazine (DEC), DEC with albendazole (ALB), and ivermectin (IVR) with albendazole, was examined on the human bancroftian filarial infections in village scale trials in south India, from a follow-up study after 2 years. The treatment arms administered with DEC alone and DEC+ALB demonstrated long-term benefits in reducing microfilaraemia significantly (P<0.05), while antigenaemia reduction was negligible. The arm with ALB+IVR did not show such reductions. Among the antigenaemic and microfilaraemic individuals, 87% became amicrofilaraemic in DEC+ALB arm, which were higher than that observed in the other 2 treatment arms. Among amicrofilaraemics (but Ag+), nearly 35% cleared of infection in DEC+ALB, while 26% and 6% in DEC alone and IVR+ALB arms, respectively. The drug combination DEC+ALB was observed to demonstrate a significant impact in reducing filarial infection even after 2 years post treatment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号