首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   694篇
  免费   53篇
  747篇
  2024年   1篇
  2023年   9篇
  2022年   20篇
  2021年   31篇
  2020年   13篇
  2019年   10篇
  2018年   27篇
  2017年   29篇
  2016年   36篇
  2015年   59篇
  2014年   39篇
  2013年   64篇
  2012年   91篇
  2011年   55篇
  2010年   37篇
  2009年   36篇
  2008年   34篇
  2007年   39篇
  2006年   29篇
  2005年   24篇
  2004年   10篇
  2003年   12篇
  2002年   19篇
  2000年   1篇
  1999年   1篇
  1998年   4篇
  1997年   2篇
  1996年   1篇
  1995年   3篇
  1994年   2篇
  1993年   1篇
  1991年   3篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1986年   1篇
排序方式: 共有747条查询结果,搜索用时 0 毫秒
41.
It has previously been shown that generic cortical microcircuit models can perform complex real-time computations on continuous input streams, provided that these computations can be carried out with a rapidly fading memory. We investigate the computational capability of such circuits in the more realistic case where not only readout neurons, but in addition a few neurons within the circuit, have been trained for specific tasks. This is essentially equivalent to the case where the output of trained readout neurons is fed back into the circuit. We show that this new model overcomes the limitation of a rapidly fading memory. In fact, we prove that in the idealized case without noise it can carry out any conceivable digital or analog computation on time-varying inputs. But even with noise, the resulting computational model can perform a large class of biologically relevant real-time computations that require a nonfading memory. We demonstrate these computational implications of feedback both theoretically, and through computer simulations of detailed cortical microcircuit models that are subject to noise and have complex inherent dynamics. We show that the application of simple learning procedures (such as linear regression or perceptron learning) to a few neurons enables such circuits to represent time over behaviorally relevant long time spans, to integrate evidence from incoming spike trains over longer periods of time, and to process new information contained in such spike trains in diverse ways according to the current internal state of the circuit. In particular we show that such generic cortical microcircuits with feedback provide a new model for working memory that is consistent with a large set of biological constraints. Although this article examines primarily the computational role of feedback in circuits of neurons, the mathematical principles on which its analysis is based apply to a variety of dynamical systems. Hence they may also throw new light on the computational role of feedback in other complex biological dynamical systems, such as, for example, genetic regulatory networks.  相似文献   
42.
VP26 is the smallest capsid protein and decorates the outer surface of the capsid shell of herpes simplex virus. It is located on the hexons at equimolar amounts with VP5. Its small size (112 amino acids) and high copy number make it an attractive molecule to use as a probe to investigate the complex pattern of capsid protein interactions. An in vitro capsid binding assay and a green fluorescent protein (GFP) localization assay were used to identify VP26 residues important for its interaction with capsids. To test for regions of VP26 that may be essential for binding to capsids, three small in-frame deletion mutations were generated in VP26, Delta18-25, Delta54-60, and Delta93-100. Their designations refer to the amino acids deleted by the mutation. The mutation at the C terminus of the molecule, which encompasses a region of highly conserved residues, abolished binding to the capsid and the localization of GFP to the nucleus in characteristic large puncta. Additional mutations revealed that a region of VP26 spanning from residue 50 to 112 was sufficient for the localization of the fused protein (VP26-GFP) to the nucleus and for it to bind to capsids. Using site-directed mutagenesis of conserved residues in VP26, two key residues for protein-protein interaction, F79 and G93, were identified as judged by the localization of GFP to nuclear puncta. When these mutations were analyzed in the capsid binding assay, they were also found to eliminate binding of VP26 to the capsid structure. Surprisingly, additional mutations that affected the ability of VP26 to bind to capsids in vitro were uncovered. Mutations at residues A58 and L64 resulted in a reduced ability of VP26 to bind to capsids. Mutation of the hydrophobic residues M78 and A80, which are adjacent to the hydrophobic residue F79, abolished VP26 capsid binding. In addition, the block of conserved amino acids in the carboxy end of the molecule had the most profound effect on the ability of VP26 to interact with capsids. Mutation of amino acid G93, L94, R95, R96, or T97 resulted in a greatly diminished ability of VP26 to bind capsids. Yet, all of these residues other than G93 were able to efficiently translocate or concentrate GFP into the nucleus, giving rise to the punctate fluorescence. Thus, the interaction of VP26 with the capsid appears to occur through at least two separate mechanisms. The initial interaction of VP26 and VP5 may occur in the cytoplasm or when VP5 is localized in the nucleus. Residues F79 and G93 are important for this bi-molecular interaction, resulting in the accumulation of VP26 in the nucleus in concentrated foci. Subsequent to this association, additional amino acids of VP26, including those in the C-terminal conserved domain, are important for interaction of VP26 with the three-dimensional capsid structure.  相似文献   
43.
44.
Boosted responsiveness of plant cells to stress at the onset of pathogen‐ or chemically induced resistance is called priming. The chemical β‐aminobutyric acid (BABA) enhances Arabidopsis thaliana resistance to hemibiotrophic bacteria through the priming of the salicylic acid (SA) defence response. Whether BABA increases Arabidopsis resistance to the necrotrophic bacterium Pectobacterium carotovorum ssp. carotovorum (Pcc) is not clear. In this work, we show that treatment with BABA protects Arabidopsis against the soft‐rot pathogen Pcc. BABA did not prime the expression of the jasmonate/ethylene‐responsive gene PLANT DEFENSIN 1.2 (PDF1.2), the up‐regulation of which is usually associated with resistance to necrotrophic pathogens. Expression of the SA marker gene PATHOGENESIS RELATED 1 (PR1) on Pcc infection was primed by BABA treatment, but SA‐defective mutants demonstrated a wild‐type level of BABA‐induced resistance against Pcc. BABA primed the expression of the pattern‐triggered immunity (PTI)‐responsive genes FLG22‐INDUCED RECEPTOR‐LIKE KINASE 1 (FRK1), ARABIDOPSIS NON‐RACE SPECIFIC DISEASE RESISTANCE GENE (NDR1)/HAIRPIN‐INDUCED GENE (HIN1)‐LIKE 10 (NHL10) and CYTOCHROME P450, FAMILY 81 (CYP81F2) after inoculation with Pcc or after treatment with purified bacterial microbe‐associated molecular patterns, such as flg22 or elf26. PTI‐mediated callose deposition was also potentiated in BABA‐treated Arabidopsis, and BABA boosted Arabidopsis stomatal immunity to Pcc. BABA treatment primed the PTI response in the SA‐defective mutants SA induction deficient 2‐1 (sid2‐1) and phytoalexin deficient 4‐1 (pad4‐1). In addition, BABA priming was associated with open chromatin configurations in the promoter region of PTI marker genes. Our data indicate that BABA primes the PTI response upon necrotrophic bacterial infection and suggest a role for the PTI response in BABA‐induced resistance.  相似文献   
45.
46.
47.
Postharvest losses of cut flowers is one of the considerable challenges restricting their efficient marketability. Consequently, such challenges have triggered a constant hunt for developing compatible postharvest treatments to mitigate postharvest losses. Interestingly, recent studies entrench extensive role of salicylic acid (SA) in mitigating postharvest losses in various flower systems. The current investigation focusses on role of SA in augmenting physiological and biochemical responses to mitigate postharvest senescence in cut spikes of Consolida ajacis. The cut spikes of C. ajacis were supplemented with various SA treatments viz, 2 mM, 4 mM, 6 mM. The effects of these treatments were evaluated against control set of spikes placed in distilled water. Our study indicates considerable increment in postharvest longevity of cut spikes, besides an increase in solution uptake, sugar and protein content of tepal tissues.SA augmented antioxidant system via upsurge in phenolic content and antioxidant enzymes viz, superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) to forfend reactive oxygen species (ROS) related oxidative damage. SA profoundly reduced lipoxygenase (LOX) activity to preserve the membrane integrity and thus prevented seepage of solutes from tepal tissues. These results authenticate SA particularly 4 mM concentration as effective postharvest treatment to preserve the postharvest quality of C. ajacis cut spikes.  相似文献   
48.
49.
The requirement to cross a biological membrane can be a complex process especially if multidrug transporters such as P-gp must be considered. Drug partitioning into the lipid membrane and efflux by P-gp are tightly coupled processes wherein H-bonding interactions play a key role. All H-bond donors and acceptors are not equal in terms of the strength of the H-bonds that they form, hence it is important to consider their relative strength. Using various examples from literature, we illustrate the benefits of considering the relative strengths of individual H-bonds and introducing intramolecular H-bonds to increase membrane permeability and/or decrease P-gp efflux.  相似文献   
50.
Petroleum products are one of the major sources of energy for industry and daily life. Growth of the petroleum industry and shipping of petroleum products has resulted in the pollution. Populations living in the vicinity of oil refinery waste sites may be at greater risk of potential exposure to polycyclic aromatic hydrocarbons (PAH) through inhalation, ingestion, and direct contact with contaminated media. PAH have often been found to coexist with environmental pollutants including heavy metals due to similar pollution sources. The levels and distribution patterns of Σ16 PAH (sum of the 16 PAH) and heavy metals (lead, copper, nickel, cobalt, and chromium) were determined in soil and sediment in the vicinity (5 km radius) of an oil refinery in India. Concentrations of Σ16 PAH in the soils and sediments were found to be 60.36 and 241.23 ppm, respectively. Higher amount of PAH in sediments as compared to soil is due to low water solubility of PAH, settled in the bottom of aquatic bodies. The levels of lead, copper, nickel, cobalt, and chromium (total) in soil were 12.52, 13.52, 18.78, 4.84, and 8.29 ppm, while the concentrations of these metals in sediments were 16.38, 47.88, 50.15, 7.07, and 13.25 ppm, respectively. Molecular diagnostics indices of PAH (Ratio of Phenanthrene/Anthracene, Fluranthene/Pyrene) calculated for soil and sediment samples indicate that the oil refinery environment is contaminated with PAH from petrogenic as well as pyrolytic origin and heavy vehicular traffic on the Agra- Delhi National highway. Sixteen PAH priority pollutants were detected in the United States in entire samples collected near oil refinery areas and concentrations of Σ16 PAH in soil was found to be 1.20 times higher than the threshold value for PAH in soil by ICRCL (Inter-Departmental Committee on the Redevelopment of Contaminated Land). This concentration could lead to disastrous consequences for the biotic and abiotic components of the ecosystem and may affect the soil quality, thus impairing plant growth and its bioaccumulation in food chain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号