首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   691篇
  免费   53篇
  2024年   1篇
  2023年   8篇
  2022年   18篇
  2021年   31篇
  2020年   13篇
  2019年   10篇
  2018年   27篇
  2017年   29篇
  2016年   36篇
  2015年   59篇
  2014年   39篇
  2013年   64篇
  2012年   91篇
  2011年   55篇
  2010年   37篇
  2009年   36篇
  2008年   34篇
  2007年   39篇
  2006年   29篇
  2005年   24篇
  2004年   10篇
  2003年   12篇
  2002年   19篇
  2000年   1篇
  1999年   1篇
  1998年   4篇
  1997年   2篇
  1996年   1篇
  1995年   3篇
  1994年   2篇
  1993年   1篇
  1991年   3篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1986年   1篇
排序方式: 共有744条查询结果,搜索用时 78 毫秒
21.
The somatic mutations in ATP binding cleft of the tyrosine kinase binding domain of EGFR are known to occur in 15–40% of non-small cell lung cancer (NSCLC) patients. Although first and second generation anti-EGFR inhibitors are widely used to treat these patients, their therapeutic efficacy is modest and often results in adverse effects or drug resistance. Therefore, there is a need to develop novel as well as safe anti-EGFR drugs. The rapid emergence of computational drug designing provided a great opportunity to both discover and predict the efficacy of novel EGFR inhibitors from plant sources. In the present study, we designed several chemical analogues of edible curcumin (CUCM) compound and assessed their drug likeliness, ADME and toxicity properties using a diverse range of advanced computational methods. We also have examined the structural plasticity and binding characteristics of EGFR wild-type and mutant forms (S769L and K846R) against ligand molecules like Gefitinib, native CUCM, and different CUCM analogues. Through multidimensional experimental approaches, we conclude that CUCM-36 ((1E,4Z,6E)-1-(3,4-Diphenoxyphenyl)-5-hydroxy-7-(4-hydroxy-3-phenoxyphenyl)-1,4,6-heptatrien-3-one) is the best anti-EGFR compound with high drug-likeness, ADME properties, and low toxicity properties. CUCM-36 compound has demonstrated better affinity towards both wild-type (ΔG is ?8.5?kcal/Mol) and mutant forms (V769L & K846R; ΔG for both is >?9.20?kcal/Mol) compared to natural CUCM and Gefitinib inhibitor. This study advises the future laboratory assays to develop CUCM-36 as a novel drug compound for treating EGFR positive non-small cell lung cancer patients.  相似文献   
22.
It has previously been shown that generic cortical microcircuit models can perform complex real-time computations on continuous input streams, provided that these computations can be carried out with a rapidly fading memory. We investigate the computational capability of such circuits in the more realistic case where not only readout neurons, but in addition a few neurons within the circuit, have been trained for specific tasks. This is essentially equivalent to the case where the output of trained readout neurons is fed back into the circuit. We show that this new model overcomes the limitation of a rapidly fading memory. In fact, we prove that in the idealized case without noise it can carry out any conceivable digital or analog computation on time-varying inputs. But even with noise, the resulting computational model can perform a large class of biologically relevant real-time computations that require a nonfading memory. We demonstrate these computational implications of feedback both theoretically, and through computer simulations of detailed cortical microcircuit models that are subject to noise and have complex inherent dynamics. We show that the application of simple learning procedures (such as linear regression or perceptron learning) to a few neurons enables such circuits to represent time over behaviorally relevant long time spans, to integrate evidence from incoming spike trains over longer periods of time, and to process new information contained in such spike trains in diverse ways according to the current internal state of the circuit. In particular we show that such generic cortical microcircuits with feedback provide a new model for working memory that is consistent with a large set of biological constraints. Although this article examines primarily the computational role of feedback in circuits of neurons, the mathematical principles on which its analysis is based apply to a variety of dynamical systems. Hence they may also throw new light on the computational role of feedback in other complex biological dynamical systems, such as, for example, genetic regulatory networks.  相似文献   
23.
Postharvest losses of cut flowers is one of the considerable challenges restricting their efficient marketability. Consequently, such challenges have triggered a constant hunt for developing compatible postharvest treatments to mitigate postharvest losses. Interestingly, recent studies entrench extensive role of salicylic acid (SA) in mitigating postharvest losses in various flower systems. The current investigation focusses on role of SA in augmenting physiological and biochemical responses to mitigate postharvest senescence in cut spikes of Consolida ajacis. The cut spikes of C. ajacis were supplemented with various SA treatments viz, 2 mM, 4 mM, 6 mM. The effects of these treatments were evaluated against control set of spikes placed in distilled water. Our study indicates considerable increment in postharvest longevity of cut spikes, besides an increase in solution uptake, sugar and protein content of tepal tissues.SA augmented antioxidant system via upsurge in phenolic content and antioxidant enzymes viz, superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) to forfend reactive oxygen species (ROS) related oxidative damage. SA profoundly reduced lipoxygenase (LOX) activity to preserve the membrane integrity and thus prevented seepage of solutes from tepal tissues. These results authenticate SA particularly 4 mM concentration as effective postharvest treatment to preserve the postharvest quality of C. ajacis cut spikes.  相似文献   
24.
VP26 is the smallest capsid protein and decorates the outer surface of the capsid shell of herpes simplex virus. It is located on the hexons at equimolar amounts with VP5. Its small size (112 amino acids) and high copy number make it an attractive molecule to use as a probe to investigate the complex pattern of capsid protein interactions. An in vitro capsid binding assay and a green fluorescent protein (GFP) localization assay were used to identify VP26 residues important for its interaction with capsids. To test for regions of VP26 that may be essential for binding to capsids, three small in-frame deletion mutations were generated in VP26, Delta18-25, Delta54-60, and Delta93-100. Their designations refer to the amino acids deleted by the mutation. The mutation at the C terminus of the molecule, which encompasses a region of highly conserved residues, abolished binding to the capsid and the localization of GFP to the nucleus in characteristic large puncta. Additional mutations revealed that a region of VP26 spanning from residue 50 to 112 was sufficient for the localization of the fused protein (VP26-GFP) to the nucleus and for it to bind to capsids. Using site-directed mutagenesis of conserved residues in VP26, two key residues for protein-protein interaction, F79 and G93, were identified as judged by the localization of GFP to nuclear puncta. When these mutations were analyzed in the capsid binding assay, they were also found to eliminate binding of VP26 to the capsid structure. Surprisingly, additional mutations that affected the ability of VP26 to bind to capsids in vitro were uncovered. Mutations at residues A58 and L64 resulted in a reduced ability of VP26 to bind to capsids. Mutation of the hydrophobic residues M78 and A80, which are adjacent to the hydrophobic residue F79, abolished VP26 capsid binding. In addition, the block of conserved amino acids in the carboxy end of the molecule had the most profound effect on the ability of VP26 to interact with capsids. Mutation of amino acid G93, L94, R95, R96, or T97 resulted in a greatly diminished ability of VP26 to bind capsids. Yet, all of these residues other than G93 were able to efficiently translocate or concentrate GFP into the nucleus, giving rise to the punctate fluorescence. Thus, the interaction of VP26 with the capsid appears to occur through at least two separate mechanisms. The initial interaction of VP26 and VP5 may occur in the cytoplasm or when VP5 is localized in the nucleus. Residues F79 and G93 are important for this bi-molecular interaction, resulting in the accumulation of VP26 in the nucleus in concentrated foci. Subsequent to this association, additional amino acids of VP26, including those in the C-terminal conserved domain, are important for interaction of VP26 with the three-dimensional capsid structure.  相似文献   
25.
26.
The syntheses of 2-hydroxy-N-(2-hydroxyethyl)-N,N-dimethylhexadecan-1-aminium chloride [1(16)Cl] and iodide [1(16)I], 2-hydroxy-N,N,N-trimethylhexadecan-1-aminium chloride (6), N-(2-hydroxyethyl)-N,N-dimethylhexadecan-1-aminium chloride (8), N,N-bis(2-hydroxyethyl)-N-methylhexadecan-1-aminium chloride (11), and 2-hydroxy-N-(2-hydroxyethyl)-N,N-dimethyl-4-oxahexadecan-1-aminium chloride (14) are reported along with the critical micelle concentrations (cmcs), as measured by conductivity at 25 degrees C, of 1(16)Cl, 1(16)I, 6, 8, 11, and N,N,N-trimethylhexadecan-1-aminium chloride (12). All compounds display spermicidal and virucidal activity. A plot of minimum effective concentration (MEC) in the Sander-Cramer spermicidal assay and cmc shows that 1(16)Cl and 6 have the best spermicidal activity and highest cmcs. Compounds 8, 11, and 1(16)Cl are the most active at 0.05 mg mL(-1) against cell-free and cell-associated virus. In conclusion, 1(16)Cl shows the best combination of dual activity against sperm and HIV; it is a promising candidate for further preclinical studies as a topical, contraceptive microbicide.  相似文献   
27.
28.
The genomic DNA of the BE strain of Escherichia coli has been scrutinized to detect porin genes that have not been identified so far. Southern blot analysis yielded two DNA segments which proved highly homologous to, yet distinct from, the ompC, ompF, and phoE porin genes. The two genes were cloned and sequenced. One of them, designated ompN, encodes a porin which, due to low levels of expression, has eluded prior identification. The functional properties (single-channel conductance) of the OmpN porin, purified to homogeneity, closely resemble those of the OmpC porin from E. coli K-12. The second DNA fragment detected corresponds to the nmpC gene, which, due to an insertion of an IS1 element in its coding region, is not expressed in E. coli BE.  相似文献   
29.
The herpes simplex virus type 1 (HSV-1) UL25 gene contains a 580-amino-acid open reading frame that codes for an essential protein. Previous studies have shown that the UL25 gene product is a virion component (M. A. Ali et al., Virology 216:278–283, 1996) involved in virus penetration and capsid assembly (C. Addison et al., Virology 138:246–259, 1984). In this study, we describe the isolation of a UL25 mutant (KUL25NS) that was constructed by insertion of an in-frame stop codon in the UL25 open reading frame and propagated on a complementing cell line. Although the mutant was capable of synthesis of viral DNA, it did not form plaques or produce infectious virus in noncomplementing cells. Antibodies specific for the UL25 protein were used to demonstrate that KUL25NS-infected Vero cells did not express the UL25 protein. Western immunoblotting showed that the UL25 protein was associated with purified, wild-type HSV A, B, and C capsids. Transmission electron microscopy indicated that the nucleus of Vero cells infected with KUL25NS contained large numbers of both A and B capsids but no C capsids. Analysis of infected cells by sucrose gradient sedimentation analysis confirmed that the ratio of A to B capsids was elevated in KUL25NS-infected Vero cells. Following restriction enzyme digestion, specific terminal fragments were observed in DNA isolated from KUL25NS-infected Vero cells, indicating that the UL25 gene was not required for cleavage of replicated viral DNA. The latter result was confirmed by pulsed-field gel electrophoresis (PFGE), which showed the presence of genome-size viral DNA in KUL25NS-infected Vero cells. DNase I treatment prior to PFGE demonstrated that monomeric HSV DNA was not packaged in the absence of the UL25 protein. Our results indicate that the product of the UL25 gene is required for packaging but not cleavage of replicated viral DNA.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号