首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   702篇
  免费   54篇
  2022年   9篇
  2021年   11篇
  2020年   6篇
  2019年   8篇
  2018年   34篇
  2017年   23篇
  2016年   24篇
  2015年   40篇
  2014年   48篇
  2013年   45篇
  2012年   66篇
  2011年   52篇
  2010年   29篇
  2009年   25篇
  2008年   41篇
  2007年   29篇
  2006年   28篇
  2005年   24篇
  2004年   20篇
  2003年   17篇
  2002年   10篇
  2001年   5篇
  2000年   9篇
  1999年   4篇
  1998年   5篇
  1997年   8篇
  1996年   5篇
  1995年   8篇
  1993年   6篇
  1992年   6篇
  1991年   7篇
  1990年   4篇
  1989年   5篇
  1988年   3篇
  1987年   6篇
  1986年   7篇
  1985年   6篇
  1984年   7篇
  1983年   7篇
  1981年   2篇
  1980年   3篇
  1979年   7篇
  1978年   3篇
  1977年   4篇
  1976年   5篇
  1975年   8篇
  1974年   3篇
  1973年   6篇
  1972年   5篇
  1971年   4篇
排序方式: 共有756条查询结果,搜索用时 15 毫秒
671.
Solvent composition plays a major role in stabilizing/destabilizing the forces that are responsible for the native structure of a protein. Often, the solvent composition drives the protein into non-native conformations. Elucidation of such non-native structures provides valuable information about the molecular structure of the protein, which is unavailable otherwise. Inclusion of methanol (non-fluorinated alcohol) or TFE (fluorinated alcohol) in the solvent composition drove cryptolepain, a serine protease and an all-β-protein, into a non-native structure with an enhanced β-sheet or induction of α-helix. These solvents did not much affect cryptolepain under neutral conditions, even at higher concentrations, but the effects were predominant at lower pH, when the protein molecule is under stress. The organic solvent-induced state is partially unfolded with similar characteristics to the molten globule state seen with protein under a variety of conditions. Chemical- or temperature-induced unfolding of cryptolepain in the presence of organic solvent is distinctly different from that in the absence of organic solvent. Such different unfolding provided evidence of two structural variants in the molecular structure of the protein as well as the differential stabilization/destabilization of such structural variants and their sequential unfolding.  相似文献   
672.
Devaraneni PK  Mishra N  Bhat R 《Biochimie》2012,94(4):947-952
Osmolytes produced under stress in animal and plant systems have been shown to increase thermal stability of the native state of a number of proteins as well as induce the formation of molten globule (MG) in acid denatured states and compact conformations in natively unfolded proteins. However, it is not clear whether these solutes stabilize native state relative to the MG state under partially denaturing conditions. Yeast hexokinase A exists as a MG state at pH 2.5 that does not show any cooperative transition upon heating. Does the presence of some of these osmolytes at pH 2.5 help in the retention of structure that is typical of native state? To answer this question, the effect of ethylene glycol (EG), glycerol, xylitol, sorbitol, trehalose and glucose at pH 2.5 on the structure and stability of yeast hexokinase A was investigated using spectroscopy and calorimetry. In presence of the above osmolytes, except EG, yeast hexokinase at pH 2.5 retains native secondary structure and hydrophobic core and unfolds with excessive heat absorption upon thermal denaturation. However, the cooperative structure binds to ANS suggesting that it is an intermediate between MG and the native state. Further, we show that at high concentration of polyols at pH 2.5, except EG, which populates a non-native ensemble, ΔHcalHvan approaches unity indicative of two-state unfolding. The results suggest that osmolytes stabilize cooperative protein structure relative to non-cooperative ensemble. These findings have implications toward the structure formation, folding and stability of proteins produced under stress in cellular systems.  相似文献   
673.
Reactive oxygen species constantly generated as by-products of cellular metabolism readily attack genomic DNA creating mutagenic lesions such as 7,8-dihydro-8-oxo-guanine (8-oxo-G) that promote aging. 8-oxo-G:A mispairs arising during DNA replication are eliminated by base excision repair initiated by the MutY DNA glycosylase homologue (MUTYH). Here, by using formaldehyde crosslinking in mammalian cell extracts, we demonstrate that the WRN helicase/exonuclease defective in the premature aging disorder Werner syndrome (WS) is recruited to DNA duplex containing an 8-oxo-G:A mispair in a manner dependent on DNA polymerase λ (Polλ) that catalyzes accurate DNA synthesis over 8-oxo-G. Similarly, by immunofluorescence, we show that Polλ is required for accumulation of WRN at sites of 8-oxo-G lesions in human cells. Moreover, we show that nuclear focus formation of WRN and Polλ induced by oxidative stress is dependent on ongoing DNA replication and on the presence of MUTYH. Cell viability assays reveal that depletion of MUTYH suppresses the hypersensitivity of cells lacking WRN and/or Polλ to oxidative stress. Biochemical studies demonstrate that WRN binds to the catalytic domain of Polλ and specifically stimulates DNA gap filling by Polλ over 8-oxo-G followed by strand displacement synthesis. Our results suggest that WRN promotes long-patch DNA repair synthesis by Polλ during MUTYH-initiated repair of 8-oxo-G:A mispairs.  相似文献   
674.
675.
An investigation was directed towards biochemical characterization of cyanobacterium Calothrix elenkinii and analysis of the chemical nature and mode of action of its fungicidal metabolite(s) against oomycete Pythium debaryanum. Biochemical characterization of the culture in terms of carbohydrate utilization revealed the facultative nature of C. elenkinii. Unique antibiotic markers were also found for this strain. 16S rDNA sequencing of the strain revealed 98% similarity with Calothrix sp. PCC7101. The fungicidal activity was tested by disc diffusion assay of different fractions of the culture filtrate. A minimum inhibitory concentration of 10 microl was recorded for ethyl acetate fraction of the 7-weeks old culture filtrates. HPLC, followed by NMR spectral analysis demonstrated the presence of a substituted benzoic acid in the ethyl acetate fraction. Microscopic examination revealed distinct granulation, followed by disintegration of the hyphae of Pythium sp., indicating the presence of an active metabolite in the culture filtrates of Calothrix sp. The fungicidal activity of C. elenkinii can be attributed to the presence of 3-acetyl-2-hydroxy-6-methoxy-4-methyl benzoic acid. This is the first report of a benzoic acid derivative having fungicidal activity in cyanobacteria.  相似文献   
676.
In neurodegenerative diseases caused by extended polyglutamine (polyQ) sequences in proteins, aggregation-prone polyQ proteins accumulate in intraneuronal inclusions. PolyQ proteins can be degraded by lysosomes or proteasomes. Proteasomes are unable to hydrolyze polyQ repeat sequences, and during breakdown of polyQ proteins, they release polyQ repeat fragments for degradation by other cellular enzymes. This study was undertaken to identify the responsible proteases. Lysosomal extracts (unlike cytosolic enzymes) were found to rapidly hydrolyze polyQ sequences in peptides, proteins, or insoluble aggregates. Using specific inhibitors against lysosomal proteases, enzyme-deficient extracts, and pure cathepsins, we identified cathepsins L and Z as the lysosomal cysteine proteases that digest polyQ proteins and peptides. RNAi for cathepsins L and Z in different cell lines and adult mouse muscles confirmed that they are critical in degrading polyQ proteins (expanded huntingtin exon 1) but not other types of aggregation-prone proteins (e.g. mutant SOD1). Therefore, the activities of these two lysosomal cysteine proteases are important in host defense against toxic accumulation of polyQ proteins.  相似文献   
677.
Accurate identification of substrates of a protease is critical in defining its physiological functions. We previously predicted that Dsg-2 (desmoglein-2), a desmosomal protein, is a candidate substrate of the transmembrane serine protease matriptase. The present study is an experimental validation of this prediction. As demanded by our published method PNSAS [Prediction of Natural Substrates from Artificial Substrate of Proteases; Venkatraman, Balakrishnan, Rao, Hooda and Pol (2009) PLoS ONE 4, e5700], this enzyme-substrate pair shares a common subcellular distribution and the predicted cleavage site is accessible to the protease. Matriptase knock-down cells showed enhanced immunoreactive Dsg-2 at the cell surface and formed larger cell clusters. When matriptase was mobilized from intracellular storage deposits to the cell surface there was a decrease in the band intensity of Dsg-2?in the plasma membrane fractions with a concomitant accumulation of a cleaved product in the conditioned medium. The exogenous addition of pure active recombinant matriptase decreased the surface levels of immunoreactive Dsg-2, whereas the levels of CD44 and E-cadherin were unaltered. Dsg-2 with a mutation at the predicted cleavage site is resistant to cleavage by matriptase. Thus Dsg-2 seems to be a functionally relevant physiological substrate of matriptase. Since breakdown of cell-cell contact is the first major event in invasion, this reciprocal relationship is likely to have a profound role in cancers of epithelial origin. Our algorithm has the potential to become an integral tool for discovering new protease-substrate pairs.  相似文献   
678.
Four core structures capable of providing sub-nanomolar inhibitors of anthrax lethal factor (LF) were evaluated by comparing the potential for toxicity, physicochemical properties, in vitro ADME profiles, and relative efficacy in a rat lethal toxin (LT) model of LF intoxication. Poor efficacy in the rat LT model exhibited by the phenoxyacetic acid series (3) correlated with low rat microsome and plasma stability. Specific molecular interactions contributing to the high affinity of inhibitors with a secondary amine in the C2-side chain were revealed by X-ray crystallography.  相似文献   
679.
Recent research on the SARS-CoV-2 pandemic has exploded around the furin-cleavable polybasic insert PRRAR↓S, found within the spike protein. The insert and the receptor-binding domain, (RBD), are vital clues in the Sherlock Holmes-like investigation into the origin of the virus and in its zoonotic crossover. Based on comparative analysis of the whole genome and the sequence features of the insert and the RBD domain, the bat and the pangolin have been proposed as very likely intermediary hosts. In this study, using the various databases, in-house developed tools, sequence comparisons, structure-guided docking, and molecular dynamics simulations, we cautiously present a fresh, theoretical perspective on the SARS-CoV-2 virus activation and its intermediary host. They are a) the SARS-CoV-2 has not yet acquired a fully optimal furin binding site or this seemingly less optimal sequence, PRRARS, has been selected for survival; b) in structural models of furin complexed with peptides, PRRAR↓S binds less well and with distinct differences as compared to the all basic RRKRR↓S; c) these differences may be exploited for the design of virus-specific inhibitors; d) the novel polybasic insert of SARS-CoV-2 may be promiscuous enough to be cleaved by multiple enzymes of the human airway epithelium and tissues which may explain its unexpected broad tropism; e) the RBD domain of the feline coronavirus spike protein carries residues that are responsible for high-affinity binding of the SARS-CoV-2 to the ACE 2 receptor; f) en route zoonotic transfer, the virus may have passed through the domestic cat whose very human-like ACE2 receptor and furin may have played some role in optimizing the traits required for zoonotic transfer.  相似文献   
680.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号