首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   701篇
  免费   54篇
  2022年   8篇
  2021年   11篇
  2020年   6篇
  2019年   8篇
  2018年   34篇
  2017年   23篇
  2016年   24篇
  2015年   40篇
  2014年   48篇
  2013年   45篇
  2012年   66篇
  2011年   52篇
  2010年   29篇
  2009年   25篇
  2008年   41篇
  2007年   29篇
  2006年   28篇
  2005年   24篇
  2004年   20篇
  2003年   17篇
  2002年   10篇
  2001年   5篇
  2000年   9篇
  1999年   4篇
  1998年   5篇
  1997年   8篇
  1996年   5篇
  1995年   8篇
  1993年   6篇
  1992年   6篇
  1991年   7篇
  1990年   4篇
  1989年   5篇
  1988年   3篇
  1987年   6篇
  1986年   7篇
  1985年   6篇
  1984年   7篇
  1983年   7篇
  1981年   2篇
  1980年   3篇
  1979年   7篇
  1978年   3篇
  1977年   4篇
  1976年   5篇
  1975年   8篇
  1974年   3篇
  1973年   6篇
  1972年   5篇
  1971年   4篇
排序方式: 共有755条查询结果,搜索用时 31 毫秒
631.
Ex situ treatment of simulated pyrene-contaminated soil was studied in bio-slurry phase reactors operated in periodic discontinuous batch mode under anoxic–aerobic–anoxic–anoxic microenvironment. Experiments were performed in six different bio-slurry phase reactors (retention time of 120 h; soil loading rate of 20 kg soil/m3-day; operating temperature at 28±2 °C) by varying substrate concentration (substrate loading rate (SLR), 0.12, 0.24 and 0.36 g pyrene/kg soil-day) and bioaugmentation application (domestic sewage inoculum; CFU—2×106). The performance of slurry phase reactors was found to be dependent on the applied SLR and application of bioaugmentation (domestic sewage as augmented inoculum). Control reactor (killed control) showed only 6% of pyrene degradation while the non-augmented reactor showed an efficiency of 34% (substrate degradation rate (SDR)—0.0165 g pyrene/kg soil-day). In the case of augmented reactors, the system operated with low SLR showed a pyrene degradation efficiency of almost 90% (SDR—0.04 g pyrene/kg soil-day) and the reactor with high SLR showed 50% (SDR—0.025 g pyrene/kg soil-day) of pyrene degradation indicating the dependence of performance on the substrate concentration. Colony forming units (CFUs) variation was in good agreement with the performance of the reactors with respect to pyrene degradation. On the whole, pyrene degradation rate was greater in the augmented reactors compared to non-augmented reactors.  相似文献   
632.
A series of novel, potent, and selective muscarinic receptor 1 agonists (M1 receptor agonists) that employ a key N-substituted morpholine Arecoline moiety has been synthesized as part of research effort for the therapy of Alzheimer’s diseases. The ester group of arecoline (which is reported as muscarinic agonist) has been replaced by N-substituted morpholine ring. The structure–activity relationship reveals that the electron donating 4-substituted sulfonyl derivatives (9a, 9b, 9c, and 9e) on the nitrogen atom of the morpholine ring increases the affinity of M1 receptor binding 50- to 80-fold greater than the corresponding arecoline. Other derivatives also showed considerable M1 receptor binding affinity.  相似文献   
633.
There is a growing interest in the use of bioinoculants to assist mineral fertilizers in improving crop production and yield. Azotobacter and Pseudomonas are two agriculturally relevant strains of bacteria which have been established as efficient bioinoculants. An experiment involving addition of graded concentrations of zinc oxide (ZnO) nanoparticles was undertaken using log phase cultures of Azotobacter and Pseudomonas. Growth kinetics revealed a clear trend of gradual decrease with Pseudomonas; however, Azotobacter exhibited a twofold enhancement in growth with increase in the concentration of ZnO concentration. Scanning electron microscopy (SEM), supported by energy-dispersive X-ray (EDX) analyses, illustrated the significant effect of ZnO nanoparticles on Azotobacter by the enhancement in the abundance of globular biofilm-like structures and the intracellular presence of ZnO, with the increase in its concentration. It can be surmised that extracellular mucilage production in Azotobacter may be providing a barrier to the nanoparticles. Further experiments with Azotobacter by inoculation of wheat and tomato seeds with ZnO nanoparticles alone or bacteria grown on ZnO-infused growth medium revealed interesting results. Vigour index of wheat seeds reduced by 40–50% in the presence of different concentrations of ZnO nanoparticles alone, which was alleviated by 15–20%, when ZnO and Azotobacter were present together. However, a drastic 50–60% decrease in vigour indices of tomato seeds was recorded, irrespective of Azotobacter inoculation.  相似文献   
634.
A Soil bacterium, Bacillus subtilis, isolated from the rhizosphere of rice, showed high biocontrol activity against blast, sheath blight and bacterial blight. In the present study, four B. subtilis strains isolated from paddy soil were studied under laboratory, greenhouse and field conditions. Among the four strains assayed, UASP17 gave maximum inhibition of paddy pathogens and was validated under field trials. B. subtilis (UASP17) under different doses and methods of applications was evaluated for two seasons at Agriculture Research Station (UAS, Raichur). UASP17 was effective in reducing the severity of blast (9.00% and 15.57%), bacterial leaf blight (BLB) (5.00% and 6.11%) and sheath blight (11.93% and 4.17%) diseases for two seasons. The application of bioagent also increased the paddy grain yield (61.00 and 64.30?Q/ha) in the two seasons, respectively. Taken together, these results indicate that B. subtilis UASP17 as seedling dip for 30?min (10?mL/L of water) prior to transplanting and 2.50?L/ha foliar application was effective in managing the diseases of paddy.  相似文献   
635.
636.
Cr3+‐doped Y2O3 (0.5–9 mol%) was synthesized by a simple solution combustion method using Aloe vera gel as a fuel/surfactant. The final obtained product was calcined at 750°C for 3 h, which is the lowest temperature reported so far for the synthesis of this compound. The calcined product was confirmed for its crystallinity and purity by powder X‐ray diffraction (PXRD) studies which showed a single‐phase nano cubic phosphor. The particles size estimated by Scherrer formula was in the range of 6–19 nm. The UV–vis spectra showed absorption bands at 198, 272 and 372 nm having band gap energy in the range 4.00–4.26 eV. In order to investigate the possibility of its use in white light emitting display applications, the photoluminescence properties of Cr3+‐doped Y2O3 nanophosphors were studied at an excitation wavelength in the near ultraviolet (UV) light region (361 nm). The emission spectra consisted of emission peaks in the blue (4F9/2 → 6H15/2), orange (4F9/2 → 6H13/2) and red (4F9/2 → 6H11/2) regions. The CIE coordinates (0.33, 0.33) lie in the white light region. Hence Y2O3:Cr3+ can be used for white light‐emitting diode (LED) applications.  相似文献   
637.
In organic solar cells (OSCs), the energy of the charge‐transfer (CT) complexes at the donor–acceptor interface, E CT, determines the maximum open‐circuit voltage (V OC). The coexistence of phases with different degrees of order in the donor or the acceptor, as in blends of semi‐crystalline donors and fullerenes in bulk heterojunction layers, influences the distribution of CT states and the V OC enormously. Yet, the question of how structural heterogeneities alter CT states and the V OC is seldom addressed systematically. In this work, we combine experimental measurements of vacuum‐deposited rubrene/C60 bilayer OSCs, with varying microstructure and texture, with density functional theory calculations to determine how relative molecular orientations and extents of structural order influence E CT and V OC. We find that varying the microstructure of rubrene gives rise to CT bands with varying energies. The CT band that originates from crystalline rubrene lies up to ≈0.4 eV lower in energy compared to the one that arises from amorphous rubrene. These low‐lying CT states contribute strongly to V OC losses and result mainly from hole delocalization in aggregated rubrene. This work points to the importance of realizing interfacial structural control that prevents the formation of low E CT configurations and maximizes V OC.  相似文献   
638.
639.
640.
The activity of enzyme carbonic anhydrase (CA) was investigated in two diazotrophic cyanobacteria, Anabaena sp. (ARM 629) and Nostoc calcicola, in the presence of CO2/NaHCO3 and different inhibitors. The CA activity increased when the cells were pretreated with a high concentration of CO2/NaHCO3 and then transferred to ambient level CO2. Maximum activity of CA was observed after 8 h of incubation in light on transfer of cells from high Ci to ambient level CO2, and was low when incubated in dark. Addition of the photosynthetic inhibitor DCMU brought about a differential reduction in CA activity, depending on the carbon source (NaHCO3/CO2). CA inhibitors--ethoxyzolamide (EZ) and acetazolamide (AZ)--inhibited the enzyme activity in both the genera, but the extent of inhibition was greater in Anabaena sp. than in N. calcicola. Such a variation in extent of inhibition/stimulation of CA activity being different in the two genera reflects differences in their inherent potential and genetic background. The relevance of such cyanobacterial strains as CO2 sinks is also discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号