首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   449篇
  免费   16篇
  2023年   1篇
  2022年   11篇
  2021年   12篇
  2020年   12篇
  2019年   12篇
  2018年   23篇
  2017年   11篇
  2016年   13篇
  2015年   25篇
  2014年   39篇
  2013年   41篇
  2012年   47篇
  2011年   62篇
  2010年   23篇
  2009年   16篇
  2008年   27篇
  2007年   15篇
  2006年   24篇
  2005年   14篇
  2004年   8篇
  2003年   15篇
  2002年   6篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1994年   1篇
  1992年   1篇
  1987年   1篇
排序方式: 共有465条查询结果,搜索用时 343 毫秒
441.
442.
Keratin 8/18, the predominant keratin pair of simple epithelia, is known to be aberrantly expressed in several squamous cell carcinomas (SCCs), where its expression is often correlated with increased invasion, neoplastic progression, and poor prognosis. The majority of keratin 8/18 structural and regulatory functions are governed by posttranslational modifications, particularly phosphorylation. Apart from filament reorganization, cellular processes including cell cycle, cell growth, cellular stress, and apoptosis are known to be orchestrated by K8 phosphorylation at specific residues in the head and tail domains. Even though deregulation of K8 phosphorylation at two significant sites (Serine73/Serine431) has been implicated in neoplastic progression of SCCs by various in vitro studies, including ours, it is reported to be highly context-dependent. Therefore, to delineate the precise role of Kereatin 8 phosphorylation in cancer initiation and progression, we have developed the tissue-specific transgenic mouse model expressing Keratin 8 wild type and phosphodead mutants under Keratin 14 promoter. Subjecting these mice to 7,12-dimethylbenz(a)anthracene/12-O-tetradecanoylphorbol-13-acetate-mediated skin carcinogenesis revealed that Keratin 8 phosphorylation may lead to an early onset of tumors compared to Keratin 8 wild-type expressing mice. Conclusively, the transgenic mouse model developed in the present study ascertained a positive impact of Keratin 8 phosphorylation on the neoplastic transformation of skin-squamous cells.  相似文献   
443.

Current scenario in communicable diseases has generated new era that identifies the “One health” approach to understand the sharing and management of etiological agents with its impact on ecosystem. Under this context the relevance of zoonotic diseases generates major concern. The indiscriminate and higher use of antibiotics in animal husbandry creates substantial pressure on the gut microbiome for development of resistance due to shorter generation time and high density. Thus, gut works as a bioreactor for the breeding of ARBs in this scenario and are continuously released in different niches. These ARBs transfer resistance genes among native flora through horizontal gene transfer events, vectors and quorum sensing. About 60% of infectious diseases in human are caused by zoonotic pathogens have potential to carry ARGs which could be transmitted to humans. The well documented zoonotic diseases are anthrax cause by Bacillus anthracis, bovine tuberculosis by Mycobacterium tuberculosis, brucellosis by Brucella abortus, and hemorrhagic colitis by Escherichia coli. Similarly, most of the antibiotics are not completely metabolized and released in unmetabolized forms which enters the food chain and affect various ecological niches through bioaccumulation. The persistence period of antibiotics ranges from?<?1 to 3466 days in environment. The consequences of misusing the antibiotic in livestock and their fate in various ecological niches have been discussed in this review. Further the light sheds on antibiotics persistence and it biodegradation through different abiotic and biotic approaches in environment. The knowledge on personnel hygiene and strong surveillance system for zoonotic disease including ARBs transmission, prevention and control measures should be established to regulate the spread of AMR in the environment and subsequently to the human being through a food web.

  相似文献   
444.
445.
446.
Owing to the presence of higher amount of polyphenolic and polysaccharide compounds, Terminalia arjuna (Roxburgh) is a significant medicinal plant in the Indian primeval medicine system. Polyphenolic and polysaccharide compounds also acts as inhibitors during Genomic DNA isolation from young leaves of T. arjuna, resulting in recovery of low quality genomic DNA, which affects downstream applications like PCR, restriction digestion’s, etc. In this study, nine different methods of genomic DNA isolation were used, out of which two methods were modified CTAB based methods, third one was HEPES based method and remaining six methods was FTA Plant Saver Card based. Out of the six FTA card based methods, in the first method, leaves were directly pressed inside the circle of FTA card. In the second and third methods, the leaves were homogenized with PBS and DNase RNase free water and the sample was applied on the FTA card. In the fourth and fifth methods: finally recovered DNA from two modified CTAB based methods was directly applied to the FTA card. In the sixth method, DNA precipitated after first phenol:chloroform:isoamyl alcohol precipitation of modified CTAB based methods dissolved in DNase RNase free water and applied to FTA Card. To optimize the PCR conditions, BSA (400 ng/μl), formamide (2.5%), DMSO (5% and 10%) and glycerol (5%, 10%, 15%, and 20%) was added into the PCR mix as enhancement agents for amplification of low quality genomic DNA (A260/A280 – 1.27 ± 0.090) of T. arjuna recovered using the HEPES Based method. It was found that the BSA was the best among them followed by 10% glycerol. In addition of BSA to the PCR mixture, it specifically enhances the amplification of the low quality DNA. It reduces the noise in-between the amplified bands and increases the intensity of PCR product.  相似文献   
447.
Abstract

Bacteriocins are small peptides that can inhibit the growth of a diverse range of microbes. There is a need to identify bacteriocins that are effective against biofilms of resistant clinical strains. The present study focussed on the efficacy of purified nisin like bacteriocin-GAM217 against extended spectrum β-lactamase (ESBL) and metallo-beta-lactamase (MBL) producing clinical strains. Bacteriocin-GAM217 when combined with curcumin and cinnamaldehyde, synergistically enhanced antibacterial activity against planktonic and biofilm cultures of Staphylococcus epidermidis and Escherichia coli. Bacteriocin-GAM217 and phytochemical combinations inhibited biofilm formation by >80%, and disrupted the biofilm for selected ESBL and MBL producing clinical strains. The anti-adhesion assay showed that these combinatorial compounds significantly lowered the attachment of bacteria to Vero cells and that they elicited membrane permeability and rapid killing as viewed by confocal microscopy. This study demonstrates that bacteriocin-GAM217 in combination with phytochemicals can be a potential anti-biofilm agent and thus has potential for biomedical applications.  相似文献   
448.
449.
Shweta S. Gurav 《Ichnos》2019,26(2):134-140
Bioclast lined tubes of Schaubcylindrichnus coronus are not much reported around the world. As of now only two reports are available. Interestingly in both these reports and in the current find, tests of foraminifers are used as tube building material. Current report of Schaubcylindrichnus is from the subtidal deposits of the Naredi Formation (Ypresian) of Kachchh Basin, Western India. As the host rock here abounds in the tests of larger benthic foraminifera, concentration of same is noticed within the tubes. The natural selection of lighter and larger calcitic grains of tests over the heavier mineral grains is the main reason for presence of the tests in tube building; moreover, presence of inner smooth wall of tube also indicates organisms’ preference for comfort within their burrow.  相似文献   
450.
Polyamines (PAs) retarded the senescence of leaf discs of two diverse speciesof rose viz., Rosa bourboniana andRosa damascena, while polyamine biosynthetic inhibitorsdifluoromethylornithine (DFMO), difluoromethylarginine (DFMA), methylglyoxal-bis(guanylhydrazone) (MGBG) and abscisic acid (ABA) promoted senescence. Sperminewas significantly the most effective polyamine in retarding senescence inR. bourboniana while MGBG and DFMA were more prominent inaccelerating senescence in R. damascena and R.bourboniana respectively. Protein and RNA content were significantlyhigher in polyamine treated leaf discs compared to those treated with polyaminebiosynthetic inhibitors and ABA. Total and reducing sugars decreased under alltreatments while the starch content increased significantly only in polyaminetreated leaf discs. Peroxidase and cellulase activities were retarded bypolyamine treatments and accelerated by polyamine biosynthetic inhibitors andABA. The role of PAs is discussed in relation to senescence.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号