首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   449篇
  免费   16篇
  2023年   1篇
  2022年   11篇
  2021年   12篇
  2020年   12篇
  2019年   12篇
  2018年   23篇
  2017年   11篇
  2016年   13篇
  2015年   25篇
  2014年   39篇
  2013年   41篇
  2012年   47篇
  2011年   62篇
  2010年   23篇
  2009年   16篇
  2008年   27篇
  2007年   15篇
  2006年   24篇
  2005年   14篇
  2004年   8篇
  2003年   15篇
  2002年   6篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1994年   1篇
  1992年   1篇
  1987年   1篇
排序方式: 共有465条查询结果,搜索用时 15 毫秒
191.
Spin-filters have been primarily used for producing therapeutic proteins from mammalian cells. However, disposability and/or high filter clogging of the existing spin-filter systems affect the process economy and productivity. Hence, to address these drawbacks a reusable dual spin-filter module for perfusion culture of adherent and non-adherent mammalian cells was designed. Two non-woven Bombyx mori silk layers were used as filter screen; the outer layer was conducive to cell attachment whilst the inner was non-conducive. Adherent cells can be cultured either in suspended mode using its inner single module or as monolayer of cells using its dual concentric module. We achieved 30 % higher urokinase productivity as compared to the stainless-steel spin-filter during perfusion experiments of adherent human kidney cells in suspended mode. This was due to the hydrophobic and negatively-charged silk screen that allows clog-free perfusion culture for prolonged periods.  相似文献   
192.
Molecular Biology Reports - For ionising radiation (IR)-induced cellular toxicity, DNA cleavage is thought to be a crucial step. In this paper, the genome-wide DNA sequence preference of gamma...  相似文献   
193.
Outer membrane vesicles (OMVs) are continually released from a range of bacterial species. Numerous functions of OMVs, including the facilitation of horizontal gene transfer (HGT) processes, have been proposed. In this study, we investigated whether OMVs contribute to the transfer of plasmids between bacterial cells and species using Gram-negative Acinetobacter baylyi as a model system. OMVs were extracted from bacterial cultures and tested for the ability to vector gene transfer into populations of Escherichia coli and A. baylyi, including naturally transformation-deficient mutants of A. baylyi. Anti-double-stranded DNA (anti-dsDNA) antibodies were used to determine the movement of DNA into OMVs. We also determined how stress affected the level of vesiculation and the amount of DNA in vesicles. OMVs were further characterized by measuring particle size distribution (PSD) and zeta potential. Transmission electron microscopy (TEM) and immunogold labeling were performed using anti-fluorescein isothiocyanate (anti-FITC)-conjugated antibodies and anti-dsDNA antibodies to track the movement of FITC-labeled and DNA-containing OMVs. Exposure to OMVs isolated from plasmid-containing donor cells resulted in HGT to A. baylyi and E. coli at transfer frequencies ranging from 10−6 to 10−8, with transfer efficiencies of approximately 103 and 102 per μg of vesicular DNA, respectively. Antibiotic stress was shown to affect the DNA content of OMVs as well as their hydrodynamic diameter and zeta potential. Morphological observations suggest that OMVs from A. baylyi interact with recipient cells in different ways, depending on the recipient species. Interestingly, the PSD measurements suggest that distinct size ranges of OMVs are released from A. baylyi.  相似文献   
194.
Grain produced from cereal crops is a primary source of human food and animal feed worldwide. To understand the genetic basis of seed-size variation, a grain yield component, we conducted a genome-wide scan to detect evidence of selection in the maize Krug Yellow Dent long-term divergent seed-size selection experiment. Previous studies have documented significant phenotypic divergence between the populations. Allele frequency estimates for ∼3 million single nucleotide polymorphisms (SNPs) in the base population and selected populations were estimated from pooled whole-genome resequencing of 48 individuals per population. Using FST values across sliding windows, 94 divergent regions with a median of six genes per region were identified. Additionally, 2729 SNPs that reached fixation in both selected populations with opposing fixed alleles were identified, many of which clustered in two regions of the genome. Copy-number variation was highly prevalent between the selected populations, with 532 total regions identified on the basis of read-depth variation and comparative genome hybridization. Regions important for seed weight in natural variation were identified in the maize nested association mapping population. However, the number of regions that overlapped with the long-term selection experiment did not exceed that expected by chance, possibly indicating unique sources of variation between the two populations. The results of this study provide insights into the genetic elements underlying seed-size variation in maize and could also have applications for other cereal crops.  相似文献   
195.
A genome-wide scan to detect evidence of selection was conducted in the Golden Glow maize long-term selection population. The population had been subjected to selection for increased number of ears per plant for 30 generations, with an empirically estimated effective population size ranging from 384 to 667 individuals and an increase of more than threefold in the number of ears per plant. Allele frequencies at >1.2 million single-nucleotide polymorphism loci were estimated from pooled whole-genome resequencing data, and FST values across sliding windows were employed to assess divergence between the population preselection and the population postselection. Twenty-eight highly divergent regions were identified, with half of these regions providing gene-level resolution on potentially selected variants. Approximately 93% of the divergent regions do not demonstrate a significant decrease in heterozygosity, which suggests that they are not approaching fixation. Also, most regions display a pattern consistent with a soft-sweep model as opposed to a hard-sweep model, suggesting that selection mostly operated on standing genetic variation. For at least 25% of the regions, results suggest that selection operated on variants located outside of currently annotated coding regions. These results provide insights into the underlying genetic effects of long-term artificial selection and identification of putative genetic elements underlying number of ears per plant in maize.  相似文献   
196.
Locked pectoral spines of the Channel Catfish Ictalurus punctatus more than double the fish's width and complicate ingestion by gape‐limited predators. The spine mates with the pectoral girdle, a robust structure that anchors the spine. This study demonstrates that both spine and girdle exhibit negative allometric growth and that pectoral spines and girdles are lighter in domesticated than in wild Channel Catfish. This finding could be explained by changes in selection pressure for spine growth during domestication or by an epigenetic effect in which exposure to predators in wild fish stimulates pectoral growth. We tested the epigenetic hypothesis by exposing domesticated Channel Catfish fingerlings to Largemouth Bass Micropterus salmoides predators for 13 weeks. Spines and girdles grow isometrically in the fingerlings, and regression analysis indicates no difference in proportional pectoral growth between control and predator‐exposed fish. Therefore a change in selection pressure likely accounts for smaller pectoral growth in domesticated Channel Catfish. Decreasing spine growth in older fish suggests anti‐predator functions are most important in smaller fish. Additionally, growth of the appendicular and axial skeleton is controlled differentially, and mechanical properties of the spine and not just its length are an important component of this defensive adaptation.  相似文献   
197.
Hepatitis B virus (HBV) cccDNA levels is an absolute marker of HBV replication in the liver of HBV infected patients. This study aimed to quantify the HBV cccDNA levels in sera and liver tissue samples of treatment naïve patients with chronic hepatitis B. Eighty one chronic hepatitis B (CHB) treatment naïve patients were enrolled from January 2009 to June 2011. Total HBV DNA and HBV cccDNA levels were quantified using sensitive real time PCR assay. The mean age of recruited patients was 34 ± 11.5 years. Fifty four (66.7 %) patients were HBeAg negative. Liver tissue samples were available from 2 HBeAg positive and 21 HBeAg negative CHB patients. The amount of total intrahepatic HBV DNA ranged from 0.09 to 1508.92 copies/cell. The median intrahepatic HBV cccDNA was 0.31 and 0.20 copies/cell in HBeAg positive and HBeAg negative cases, respectively. Serum HBV cccDNA was detectable in 85.2 % HBeAg positive and 48.1 % HBeAg negative CHB patients. Median serum HBV cccDNA was 46,000 and 26,350 copies/mL in HBeAg positive and HBeAg negative subjects, respectively. There was a significant positive correlation between the levels of intrahepatic total HBV DNA and intrahepatic HBV cccDNA (r = 0.533, p = 0.009). A positive correlation was also seen between serum HBV cccDNA levels and serum HBV DNA levels (r = 0.871, p < 0.001). It was concluded that serum HBV cccDNA could be detectable in higher proportion of HBeAg positive patients compared to HBeAg negative patients. Moreover, the median level of serum HBV cccDNA was significantly higher in HBeAg positive patients in contrast to HBeAg negative subjects.  相似文献   
198.
MLL, the trithorax ortholog, is a well-characterized histone 3 lysine 4 methyltransferase that is crucial for proper regulation of the Hox genes during embryonic development. Chromosomal translocations, disrupting the Mll gene, lead to aggressive leukemia with poor prognosis. However, the functions of MLL in cellular processes like cell-cycle regulation are not well studied. Here we show that the MLL has a regulatory role during multiple phases of the cell cycle. RNAi-mediated knockdown reveals that MLL regulates S-phase progression and, proper segregation and cytokinesis during M phase. Using deletions and mutations, we narrow the cell-cycle regulatory role to the C subunit of MLL. Our analysis reveals that the transactivation domain and not the SET domain is important for the S-phase function of MLL. Surprisingly, disruption of MLL–WRAD interaction is sufficient to disrupt proper mitotic progression. These mitotic functions of WRAD are independent of SET domain of MLL and, therefore, define a new role of WRAD in subset of MLL functions. Finally, we address the overlapping and unique roles of the different SET family members in the cell cycle.  相似文献   
199.
200.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号