首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   760篇
  免费   47篇
  807篇
  2023年   7篇
  2022年   7篇
  2021年   13篇
  2020年   11篇
  2019年   18篇
  2018年   18篇
  2017年   22篇
  2016年   24篇
  2015年   29篇
  2014年   35篇
  2013年   49篇
  2012年   52篇
  2011年   52篇
  2010年   33篇
  2009年   25篇
  2008年   50篇
  2007年   42篇
  2006年   34篇
  2005年   23篇
  2004年   30篇
  2003年   23篇
  2002年   26篇
  2001年   17篇
  2000年   10篇
  1999年   16篇
  1998年   4篇
  1997年   9篇
  1995年   2篇
  1994年   5篇
  1992年   11篇
  1991年   6篇
  1990年   4篇
  1989年   3篇
  1988年   4篇
  1987年   5篇
  1986年   5篇
  1985年   11篇
  1984年   7篇
  1983年   5篇
  1982年   5篇
  1981年   7篇
  1980年   2篇
  1979年   7篇
  1978年   5篇
  1977年   5篇
  1974年   5篇
  1973年   6篇
  1971年   4篇
  1968年   3篇
  1967年   2篇
排序方式: 共有807条查询结果,搜索用时 15 毫秒
191.
Studies of morphological integration can provide insight into developmental patterns, even in extinct taxa known only from skeletal remains, thus making them an important tool for studies of evolutionary development. However, interpreting patterns of integration and assessing their significance for organismal evolution requires detailed understanding of the developmental interactions that shape integration and how those interactions change through ontogeny. Thus far, relatively little comparative data have been produced for this important topic, and the data that do exist are overwhelmingly from humans and their close relatives or from laboratory models such as mice. Here, we compare data on shape, variance and integration through postnatal ontogeny for a placental mammal, the least shrew, Cryptotis parva, and a marsupial mammal, the gray short-tailed opossum, Monodelphis domestica. Cranial variance decreased dramatically from early to late ontogeny in Cryptotis, but remained stable through ontogeny in Monodelphis, potentially reflecting functional constraints related to the short gestation and early ossification of oral bones in marsupials. Both Cryptotis and Monodelphis showed significant changes in cranial integration through ontogeny, with a mixture of increased, decreased and stable levels of integration in different cranial regions. Of particular note is that Monodelphis showed an unambiguous decrease in integration of the oral region through ontogeny, potentially relating to their early ossification. Selection at different stages of development may have markedly different effects if patterns of integration change substantially through ontogeny. Our results suggest that high integration of the oral region combined with functional constraints for suckling during early postnatal ontogeny may drive the stagnant variance observed in Monodelphis and potentially other marsupials.  相似文献   
192.
Neurons (both primary cultures of 3-day rat hippocampal neurons and embryonic chick neurons) rapidly converted exogenous NBD-sphingomyelin (SM) to NBD-Cer but only slowly converted NBD-Cer to NBD-SM. This was confirmed by demonstrating low in vitro sphingomyelin synthase (SMS) and high sphingomyelinase (SMase) activity in neurons. Similar results were observed in a human neuroblastoma cell line (LA-N-5). In contrast, primary cultures of 3-day-old rat oligodendrocytes only slowly converted NBD-SM to NBD-Cer but rapidly converted NBD-Cer to NBD-SM. This difference was confirmed by high in vitro SMS and low SMase activity in neonatal rat oligodendrocytes. Similar results were observed in a human oligodendroglioma cell line. Mass-Spectrometric analyses confirmed that neurons had a low SM/Cer ratio of (1.5 : 1) whereas oligodendroglia had a high SM/Cer ratio (9 : 1). Differences were also confirmed by [3H]palmitate-labeling of ceramide, which was higher in neurons compared with oligodendrocytes. Stable transfection of human oligodendroglioma cells with neutral SMase, which enhanced the conversion of NBD-SM to NBD-Cer and increased cell death, whereas transfection with SMS1 or SMS2 enhanced conversion of NBD-Cer to NBD-SM and was somewhat protective against cell death. Thus, SMS rather than SMases may be more important for sphingolipid homeostasis in oligodendrocytes, whereas the reverse may be true for neurons.  相似文献   
193.
Reactions of 2-(arylazo)pyridine (La-c) with [IrCl3(PPh3)2] in two different solvents, viz. ethanol and toluene are reported. In refluxing toluene two new isomeric (mer and fac geometries) iridium complexes, having molecular formula [IrCl3(PPh3)(L)] (1 and 2) have been isolated. The reaction in refluxing ethanol yielded two new hydrido complexes of molecular formula [IrHCl2(PPh3)(L)] (3) and [IrHCl(PPh3)2(L)]Cl (4) along with the compound 2. All the complexes have been thoroughly characterized by NMR, UV-Vis spectroscopy, cyclic voltammetry and X-ray crystallographic analysis. The 1H NMR spectra of the hydrido complexes 3 and 4 showed a doublet and a triplet signals at δ −20.43 and −14.82 respectively due to coupling with magnetically equivalent phosphorous nuclei. Strong trans influence of the π-acceptor ligands guided the X-ray structural parameters; bonds trans to the these ligands are unusually long. Similar elongation effect was also noted for the bonds trans to the coordinated hydrido ligand. UV-Vis-NIR spectrum consisted of multiple transitions in the UV and visible regions. Cyclic voltammetry of each of these complexes has exhibited a reductive response between −0.25 and −0.55 V, which has been assigned to azo-ligand reduction. The compound 3, however, showed a quasireversible oxidative wave near 1.45 V, due to IrIII/IrIV couple.  相似文献   
194.
The expansion of fat mass in the obese state is due to increased adipocyte hypertrophy and hyperplasia. The molecular mechanism that drives adipocyte hyperplasia remains unknown. The NAD+-dependent protein deacetylase sirtuin 1 (SIRT1), a key regulator of mammalian metabolism, maintains proper metabolic functions in many tissues, counteracting obesity. Here we report that differentiated adipocytes are hyperplastic when SIRT1 is knocked down stably in mouse 3T3-L1 preadipocytes. This phenotype is associated with dysregulated adipocyte metabolism and enhanced inflammation. We also demonstrate that SIRT1 is a key regulator of proliferation in preadipocytes. Quantitative proteomics reveal that the c-Myc pathway is altered to drive enhanced proliferation in SIRT1-silenced 3T3-L1 cells. Moreover, c-Myc is hyperacetylated, levels of p27 are reduced, and cyclin-dependent kinase 2 (CDK2) is activated upon SIRT1 reduction. Remarkably, differentiating SIRT1-silenced preadipocytes exhibit enhanced mitotic clonal expansion accompanied by reduced levels of p27 as well as elevated levels of CCAAT/enhancer-binding protein β (C/EBPβ) and c-Myc, which is also hyperacetylated. c-Myc activation and enhanced proliferation phenotype are also found to be SIRT1-dependent in proliferating mouse embryonic fibroblasts and differentiating human SW872 preadipocytes. Reducing both SIRT1 and c-Myc expression in 3T3-L1 cells simultaneously does not induce the adipocyte hyperplasia phenotype, confirming that SIRT1 controls adipocyte hyperplasia through c-Myc regulation. A better understanding of the molecular mechanisms of adipocyte hyperplasia will open new avenues toward understanding obesity.  相似文献   
195.
The effects of pelvic endometrial implants on the overall reproductive potential of female rats were investigated. After homologous transplantation in the peritoneum, the ectopic endometrium developed into highly vascularized nodes that gradually increased in mass until the 9th week postsurgery and then plateaued. In the presence of these implants, overall reproductive function was adversely affected. The effect was of greatest magnitude during 50-70 days posttransplantation. As compared with values in corresponding controls, ovulation was reduced by 43% (6 of 14) (p < 0.05), mating rate was reduced by 44% (12 of 27) (p < 0.025), and premature termination of pregnancy occurred in 34% (5 of 15) of rats. Wastage of pregnancy, which included complete termination or reduction of fetal number, occurred during the postimplantation course of gestation. Furthermore, 100% of the rats with transplants failed to respond to the copulomimetic stimulation for the induction of pseudopregnancy (p < 0.01, compared with corresponding controls). However, on exposure to vasectomized males, 46% (6 of 13) of these rats exhibited development of pseudopregnancy (p < 0.05, compared with corresponding group receiving copulomimetic stimulation). Increased rate of mating failure and differential pseudopregnancy rates after copulomimetic and natural cervical stimulation suggest that the rats with endometrial explants possibly had an absence or a short appearance of behavioral estrus. Hormonal assessment during the preovulatory phase showed a tendency toward lower mean levels of preovulatory estradiol and significantly lower LH (p < 0.01) and progesterone (p < 0.01) concentrations. The adversely affected reproductive functions may be a secondary consequence of these altered endocrine milieus.  相似文献   
196.
We have investigated the effects of inhibiting the expression of cofilin to understand its role in protrusion dynamics in metastatic tumor cells, in particular. We show that the suppression of cofilin expression in MTLn3 cells (an apolar randomly moving amoeboid metastatic tumor cell) caused them to extend protrusions from only one pole, elongate, and move rectilinearly. This remarkable transformation was correlated with slower extension of fewer, more stable lamellipodia leading to a reduced turning frequency. Hence, the loss of cofilin caused an amoeboid tumor cell to assume a mesenchymal-type mode of movement. These phenotypes were correlated with the loss of uniform chemotactic sensitivity of the cell surface to EGF stimulation, demonstrating that to chemotax efficiently, a cell must be able to respond to chemotactic stimulation at any region on its surface. The changes in cell shape, directional migration, and turning frequency were related to the re-localization of Arp2/3 complex to one pole of the cell upon suppression of cofilin expression.  相似文献   
197.
The randomly amplified polymorphic DNA (RAPD) markers were used to detect interspecific genetic variability and genetic relatedness among five Indian sciaenids namely Otolithes cuvieri, Johnieops sina, Johnieops macrorhynus, Johnieops vogleri and Protonibea diacanthus for the first time. Eight RAPD primers (OPA01, OPA06, OPA07, OPA18, OPP12, OPP14, OPP16 and OPP11) generated 40 species specific diagnostic bands. The highest genetic divergence was detected between J. macrorhynus and P. diacanthus (0.586) where as the lowest one was observed between J. sina and J. vogleri (0.274). Handling editor: C. Strumbauer  相似文献   
198.
While the importance of Ca(2+) channel activity in axonal path finding is established, the underlying mechanisms are not clear. Here, we show that transient receptor potential vanilloid receptor 1 (TRPV1), a member of the TRP superfamily of nonspecific ion channels, is physically and functionally present at dynamic neuronal extensions, including growth cones. These nonselective cation channels sense exogenous ligands, such as resenifera toxin, and endogenous ligands, such as N-arachidonoyl-dopamine (NADA), and affect the integrity of microtubule cytoskeleton. Using TRPV1-transiently transfected F11 cells and embryonic dorsal root ganglia explants, we show that activation of TRPV1 results in growth cone retraction, and collapse and formation of varicosities along neurites. These changes were due to TRPV1-activation-mediated disassembly of microtubules and are partly Ca(2+)-independent. Prolonged activation with very low doses (1 nM) of NADA results in shortening of neurites in the majority of isolectin B4-positive dorsal root ganglia neurones. We postulate that TRPV1 activation plays an inhibitory role in sensory neuronal extension and motility by regulating the disassembly of microtubules. This might have a role in the chronification of pain.  相似文献   
199.
To determine if the host-modulated adherence characteristics of the intracellular bacterial pathogen Chlamydia trachomatis were due to the acquisition of altered surface-exposed proteins, highly purified chlamydiae grown in two different host cells were analysed. Two serovars, L1 and E, were grown for multiple passages in both HeLa and McCoy host cells. Numerous protein differences in the chlamydial elementary bodies (EB) of each serovar grown in the two different hosts were detected by two-dimensional (2-D) gel electrophoresis and fluorography of radioactively labelled proteins. At least four to six serial passages in the alternative host were necessary before the changes were apparent. Iodination of suspensions of purified chlamydiae and 2-D electrophoresis revealed several surface proteins that were determined by the host cells in which the bacteria had replicated. These iodinated chlamydial proteins were removed by treatment of the iodinated EB with trypsin, indicating their location at the bacterial surface. Two of the major constituents of the outer-membrane complex, the cysteine- and methionine-rich 60 kDa and 40 kDa proteins, remained unchanged in both molecular mass and charge during the host adaptation. Several chlamydial proteins capable of binding iodinated host membrane preparations also exhibited host-dependent alterations. Immunoblotting experiments with a rabbit and a human polyclonal sera indicated that distinct host-specified chlamydial proteins were reactive with the two sera.  相似文献   
200.
We have previously shown that mitogen-activated protein (MAP) kinase activity is required for neural specification in Xenopus. In mammalian cells, the BMP-4 effector Smad1 is inhibited by phosphorylation at MAP kinase sites (Kretzschmar et al., 1997). To test the hypothesis that MAP kinase inhibits the BMP-4/Smad1 pathway during early Xenopus development, we have generated a Smad1 mutant lacking the MAP kinase phosphorylation sites (M4A-Smad1) and compared the effects of wild-type (WT)- and M4A-Smad1 on axial pattern and neural specification in Xenopus embryos. Although overexpression of either WT- or M4A-Smad1 produced ventralized embryos, at each mRNA concentration, M4A-Smad1 had a greater ventralizing effect than WT-Smad1. Interestingly, overexpression of either form of Smad1 in ventral blastomeres disrupted posterior pattern and morphogenesis; again, more severe defects were produced by expression of M4A-Smad1 than by equal amounts of WT-Smad1. Ectodermal expression of M4A-Smad1 disrupted expression of the anterior neural gene otx2 in vivo and inhibited neural specification in response to endogenous signals in mesoderm-ectoderm recombinates. In contrast, overexpression of WT-Smad1 at identical levels had little effect on either neural specification or otx2 expression. Comparisons of protein levels following overexpression of either WT- or M4A-Smad1 indicate that WT-Smad1 may be slightly more stable than M4A-Smad1; thus, differences in stability cannot account for the increased effectiveness of M4A-Smad1. Our results demonstrate that mutations disrupting the MAPK phosphorylation sites act collectively as a gain-of-function mutation in Smad1 and that inhibitory phosphorylation of Smad1 may be a significant mechanism for the regulation of BMP-4/Smad1 signals during Xenopus development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号