首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   679篇
  免费   44篇
  国内免费   1篇
  2023年   7篇
  2022年   14篇
  2021年   10篇
  2020年   12篇
  2019年   12篇
  2018年   16篇
  2017年   23篇
  2016年   22篇
  2015年   27篇
  2014年   34篇
  2013年   64篇
  2012年   65篇
  2011年   56篇
  2010年   38篇
  2009年   25篇
  2008年   36篇
  2007年   24篇
  2006年   30篇
  2005年   28篇
  2004年   43篇
  2003年   26篇
  2002年   15篇
  2001年   6篇
  2000年   5篇
  1999年   4篇
  1998年   5篇
  1997年   4篇
  1996年   2篇
  1995年   4篇
  1994年   6篇
  1993年   4篇
  1992年   5篇
  1991年   9篇
  1990年   4篇
  1989年   3篇
  1988年   5篇
  1987年   1篇
  1986年   6篇
  1985年   3篇
  1984年   3篇
  1983年   4篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1979年   3篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1969年   1篇
排序方式: 共有724条查询结果,搜索用时 203 毫秒
641.
Rho GTPases acting through effector proteins regulate actin dynamics and cytoskeletal structure. In Hermissenda Csp24 is a cytoskeletal-related protein that contributes to the development of intermediate-term memory, and is homologous to other beta-thymosin-like repeat proteins containing multiple actin-binding domains. We have examined the role of Rho GTPase activity and its downstream target ROCK, and cyclin-dependent kinase 5 (Cdk5) on the phosphorylation of Csp24 using 32PO4 labeling of proteins separated with 2-D PAGE. The ROCK inhibitor Y-27632 significantly increased Csp24 phosphorylation, and the Rho activator lysophosphatidic acid (LPA) or the Cdk5 inhibitor butyrolactone significantly decreased Csp24 phosphorylation. Pretreatment with Y-27632 before LPA application significantly reduced the decreased phosphorylation of Csp24 normally detected in nervous systems exposed to LPA. Using a pull-down assay we found that LPA treatments activated Rho and exposure to 5-HT decreased Rho activity. Our results indicate that the Rho/ROCK and Cdk5 signaling pathways contribute to the regulation of Csp24 phosphorylation.  相似文献   
642.
Although glial cell-line derived neurotrophic factor (GDNF) acts as a potent survival factor for dopaminergic neurons, it is not known whether GDNF can directly alter dopamine synthesis. Tyrosine hydroxylase (TH) is the rate-limiting enzyme for dopamine biosynthesis, and its activity is regulated by phosphorylation on three seryl residues: Ser-19, Ser-31, and Ser-40. Using a TH-expressing human neuroblastoma cell line and rat primary mesencephalic neuron cultures, the present study examined whether GDNF alters the phosphorylation of TH and whether these changes are accompanied by increased enzymatic activity. Exposure to GDNF did not alter the TH protein level in either neuroblastoma cells or in primary neurons. However, significant increases in the phosphorylation of Ser-31 and Ser-40 were detected within minutes of GDNF application in both cell types. Enhanced Ser-31 and Ser-40 phosphorylation was associated with increased TH activity but not dopamine synthesis in neuroblastoma cells, possibly because of the absence of l-aromatic amino acid decarboxylase activity in these cells. In contrast, increased phosphorylation of Ser-31 and Ser-40 was found to enhance dopamine synthesis in primary neurons. Pharmacological experiments show that Erk and protein kinase A phosphorylate Ser-31 and Ser-40, respectively, and that their inhibition blocked both TH phosphorylation and activity. Our results indicate that, in addition to its role as a survival factor for dopaminergic neurons, GDNF can directly increase dopamine synthesis.  相似文献   
643.
Structures of peptide fragments drawn from a protein can potentially occupy a vast conformational continuum. We co-ordinatize this conformational space with the help of geometric invariants and demonstrate that the peptide conformations of the currently available protein structures are heavily biased in favor of a finite number of conformational types or structural building blocks. This is achieved by representing a peptides' backbone structure with geometric invariants and then clustering peptides based on closeness of the geometric invariants. This results in 12,903 clusters, of which 2207 are made up of peptides drawn from functionally and/or structurally related proteins. These are termed "functional" clusters and provide clues about potential functional sites. The rest of the clusters, including the largest few, are made up of peptides drawn from unrelated proteins and are termed "structural" clusters. The largest clusters are of regular secondary structures such as helices and beta strands as well as of beta hairpins. Several categories of helices and strands are discovered based on geometric differences. In addition to the known classes of loops, we discover several new classes, which will be useful in protein structure modeling. Our algorithm does not require assignment of secondary structure and, therefore, overcomes the limitations in loop classification due to ambiguity in secondary structure assignment at loop boundaries.  相似文献   
644.
Phylogeography and origin of Indian domestic goats   总被引:11,自引:0,他引:11  
The Indian subcontinent contains 20 well-characterized goat breeds, which vary in their genetic potential for the production of milk, meat, and fibre; disease resistance; heat tolerance; and fecundity. Indian goats make up 20% of the world's goat population, but there has been no extensive study of these economically important animals. Therefore, we have undertaken the present investigation of 363 goats belonging to 10 different breeds from different geographic regions of India using mtDNA sequence data from the HVRI region. We find evidence for population structure and novel lineages in Indian goats and cannot reconcile the genetic diversity found within the major lineage with domestication starting 10,000 years ago from a single mtDNA ancestor. Thus, we propose a more complex origin for domestic goats.  相似文献   
645.
Heat shock proteins (HSPs) are a large family of proteins with different molecular weights and different intracellular localizations. These proteins undertake crucial functions in maintaining cell homeostasis, and therefore they have been conserved during evolution. Hsp70 and Grp94/gp96, due to their peptide chaperone capacity and their ability to actively interact with professional antigen-presenting cells (APCs), are also endowed with crucial immunological functions. The immunological properties of these proteins and their implications for vaccine in human cancer will be discussed. Immunological and clinical data of phase I/II studies in melanoma and colorectal cancer patients will be reviewed.This work was presented at the first Cancer Immunology and Immunotherapy Summer School, 8–13 September 2003, Ionian Village, Bartholomeio, Peloponnese, Greece.  相似文献   
646.
Cellular proliferation and migration are fundamental processes that contribute to the injury response in major blood vessels. The resultant pathologies are atherosclerosis and restenosis. As we begin to understand the cellular changes associated with vascular injury, it is critical to determine whether the inhibition of growth and movement of cells in the vasculature could serve as a novel therapeutic strategy to prevent atherosclerosis and restenosis.  相似文献   
647.
The aim of the present study was to prepare and evaluate a novel buccal adhesive system (NBAS) containing propranolol hydrochloride (PH). A special punch was fabricated and used while preparing an NBAS. Solubility of PH in phosphate buffer solution (pH 6.6), partition coefficient between phosphate buffer (pH 6.6) and 1-octanol, and permeability coefficient through the porcine buccal mucosa were performed and found to be 74.66 mg/mL, 5.17, and 5.6, respectively. Stability of NBAS was determined in natural human saliva, and it was found that both PH and device are stable in human saliva. NBAS was evaluated by weight uniformity, thickness, hardness, friability, swelling, mucoadhesive strength, in vitro drug release, and in vivo human acceptability studies. Swelling index was higher (4.4) for formulations containing hydroxyl propyl methyl cellulose (HPMC) K4M alone, and it decreases with its decreasing concentration in the NBAS. Mucoadhesive strength (MS) was measured by using a modified apparatus. All NBASs showed higher MS with porcine buccal mucosa when compared with that of rabbit buccal mucosa. NBASs containing carbopol (CP) 934P and HPMC K4M at the ratio of 1∶1 showed higher MS (44.76 g) with porcine buccal mucosa when compared with 1∶2 (39.76 g), 0∶1 (23.29 g), and 1∶0 (22.22 g) ratios, respectively. The mechanism of PH release was found to be by non-Fickian diffusion (value of “n” between 0.5 and 1.0) and followed first order kinetics. In vivo human acceptability study showed that the newly prepared NBAS was comfortable in the human buccal cavity. It can be concluded that NBAS is a superior, novel system that overcomes the draw-back associated with the conventional buccal adhesive tablet.  相似文献   
648.
Nanoscale carbon materials (i.e., fullerenes and nanotubes) are an attractive platform for applications in biotransformations and biosensors. The interesting properties displayed by nanoparticles demand new strategies for the manipulation of these materials on the nanoscale. Controlled modification of their surface with biomolecules is required to fully realize their potential in bionanotechnology. In this work, immobilization of a fullerene derivative with a mutant subtilisin is demonstrated, and the effect of the fullerene on the protein activity is determined. The fullerene-conjugated enzyme had improved catalytic properties in comparison to subtilisin immobilized on nonporous silica. Further, the pH profile of free and fullerene-conjugated subtilisin were almost identical.  相似文献   
649.
The development of a vaccine against visceral leishmaniasis (VL) conferring long-lasting immunity remains a challenge. Identification and proteomic characterization of parasite proteins led to the detection of p45, a member of the methionine aminopeptidase family. To our knowledge the present study is the first known report that describes the molecular and immunological characterization of p45. Recombinant Leishmania donovani p45 (rLdp45) induced cellular responses in cured hamsters and generated Th1-type cytokines from peripheral blood mononuclear cells of cured/endemic VL patients. Immunization with rLdp45 exerted considerable prophylactic efficacy (~85%) supported by an increase in mRNA expression of iNOS, IFN-γ, TNF-α and IL-12 and decrease in TGF-β and IL-4, indicating its potential as a vaccine candidate against VL.  相似文献   
650.
ABSTRACT: BACKGROUND: Protoplast technologies offer unique opportunities for fundamental research and to develop novel germplasm through somatic hybridization, organelle transfer, protoclonal variation, and direct insertion of DNA. Applying protoplast technologies to develop Dutch elm disease resistant American elms (Ulmus americana L.) was proposed over 30 years ago, but has not been achieved. A primary factor restricting protoplast technology to American elm is the resistance of the cell walls to enzymatic degradation and a long lag phase prior to cell wall resynthesis and cell division. RESULTS: This study suggests that resistance to enzymatic degradation in American elm was due to water soluble phenylpropanoids. Incubating tobacco (Nicotiana tabacum L.) leaf tissue, an easily digestible species, in aqueous elm extract inhibits cell wall digestion in a dose dependent manner. This can be mimicked by p-coumaric or ferulic acid, phenylpropanoids known to re-enforce cell walls. Culturing American elm tissue in the presence of 2-aminoindane-2-phosphonic acid (AIP; 10-150 uM), an inhibitor of phenylalanine ammonia lyase (PAL), reduced flavonoid content, decreased tissue browning, and increased isolation rates significantly from 11.8% (+/-3.27) in controls to 65.3% (+/-4.60). Protoplasts isolated from callus grown in 100 uM AIP developed cell walls by day 2, had a division rate of 28.5% (+/-3.59) by day 6, and proliferated into callus by day 14. Heterokaryons were successfully produced using electrofusion and fused protoplasts remained viable when embedded in agarose. CONCLUSIONS: This study describes a novel approach of modifying phenylpropanoid biosynthesis to facilitate efficient protoplast isolation which has historically been problematic for American elm. This isolation system has facilitated recovery of viable protoplasts capable of rapid cell wall re-synthesis and sustained cell division to form callus. Further, isolated propotoplasts survived electrofusion and viable heterokaryons were produced. Together, these results provide the first evidence of sustained cell division, callus regeneration, and potential application of somatic cell fusion in American elm, suggesting that this source of protoplasts may be ideal for genetic manipulation of this species. The technological advance made with American elm in this study has potential implications in other woody species for fundamental and applied research which require availability of viable protoplasts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号