首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1150篇
  免费   85篇
  1235篇
  2023年   14篇
  2022年   26篇
  2021年   27篇
  2020年   25篇
  2019年   18篇
  2018年   36篇
  2017年   26篇
  2016年   31篇
  2015年   31篇
  2014年   54篇
  2013年   74篇
  2012年   102篇
  2011年   68篇
  2010年   38篇
  2009年   34篇
  2008年   37篇
  2007年   59篇
  2006年   37篇
  2005年   34篇
  2004年   44篇
  2003年   35篇
  2002年   47篇
  2001年   34篇
  2000年   38篇
  1999年   33篇
  1997年   8篇
  1996年   10篇
  1995年   10篇
  1994年   8篇
  1993年   10篇
  1992年   22篇
  1991年   12篇
  1990年   17篇
  1989年   8篇
  1988年   17篇
  1987年   11篇
  1986年   9篇
  1985年   5篇
  1984年   8篇
  1983年   6篇
  1982年   13篇
  1981年   9篇
  1980年   7篇
  1979年   4篇
  1978年   5篇
  1973年   4篇
  1971年   3篇
  1969年   3篇
  1968年   3篇
  1967年   5篇
排序方式: 共有1235条查询结果,搜索用时 15 毫秒
71.
High-purity fructooligosaccharides (FOS) were produced from sucrose by an innovative process incorporating immobilized Aspergillus japonicus and Pichia heimii cells. Intracellular FTase of A. japonicus converted sucrose into FOS and glucose, and P. heimii fermented glucose mainly into ethanol. The continuous production of FOS was carried out using a tanks-in-series bioreactor consisting of three stirred tanks. When a solution composed of 1 g L?1 yeast extract and 300 g L?1 sucrose was fed continuously to the bioreactor at a dilution rate of 0.1 h?1, FOS at a purity of up to 98.2 % could be achieved and the value-added byproduct ethanol at 79.6 g L?1 was also obtained. One gram of sucrose yielded 0.62 g FOS and 0.27 g ethanol. This immobilized dual-cell system was effective for continuous production of high-purity FOS and ethanol for as long as 10 days.  相似文献   
72.
73.
Isothermal calorimetry (ITC) is efficient in characterizing and recognizing both high affinity and low affinity intermolecular interactions quickly and accurately. Adriamycin (ADR) and daunomycin (DNM) are the two anticancer drugs whose activity is achieved mainly by intercalation with DNA. During chemotherapy, normal human genomic DNA and mutated DNA from K562 leukemic cells show different thermodynamic properties and binding affinities on interaction with ADR and DNM when followed by ITC. Normal DNA shows more than one step in kinetic analysis, which could be attributed to outside binding, intercalation and reshuffling as suggested by Chaires et al. (1985); whereas K562 DNA fits a different binding pattern with higher binding affinities (by one order or more) compared to normal DNA. Structural properties of the interaction were followed by laser Raman spectroscopy, where difference in structure was apparent from the shifts in marker B DNA Raman bands (Ling et al., 2005). A correlation of thermodynamic contribution and structural data reveals step wise changes in normal genomic DNA conformation on drug binding. The overall structural change is higher in normal DNA–DNM interaction suggesting a partial B to A transition on drug binding. Such large changes were not observed for K562 DNA–DNM interaction which showed B to A transition properties in native from itself corroborating with our earlier findings (Ghosh et al., 2012).  相似文献   
74.
Organisms Diversity & Evolution - Orthoptera have some of the largest genomes of all insects. At the same time, the architecture of their genomes remains poorly understood. Comparative...  相似文献   
75.
76.
Cytometry experiments yield high-dimensional point cloud data that is difficult to interpret manually. Boolean gating techniques coupled with comparisons of relative abundances of cellular subsets is the current standard for cytometry data analysis. However, this approach is unable to capture more subtle topological features hidden in data, especially if those features are further masked by data transforms or significant batch effects or donor-to-donor variations in clinical data. We present that persistent homology, a mathematical structure that summarizes the topological features, can distinguish different sources of data, such as from groups of healthy donors or patients, effectively. Analysis of publicly available cytometry data describing non-naïve CD8+ T cells in COVID-19 patients and healthy controls shows that systematic structural differences exist between single cell protein expressions in COVID-19 patients and healthy controls. We identify proteins of interest by a decision-tree based classifier, sample points randomly and compute persistence diagrams from these sampled points. The resulting persistence diagrams identify regions in cytometry datasets of varying density and identify protruded structures such as ‘elbows’. We compute Wasserstein distances between these persistence diagrams for random pairs of healthy controls and COVID-19 patients and find that systematic structural differences exist between COVID-19 patients and healthy controls in the expression data for T-bet, Eomes, and Ki-67. Further analysis shows that expression of T-bet and Eomes are significantly downregulated in COVID-19 patient non-naïve CD8+ T cells compared to healthy controls. This counter-intuitive finding may indicate that canonical effector CD8+ T cells are less prevalent in COVID-19 patients than healthy controls. This method is applicable to any cytometry dataset for discovering novel insights through topological data analysis which may be difficult to ascertain otherwise with a standard gating strategy or existing bioinformatic tools.  相似文献   
77.
Fourier transform infrared (FTIR) spectroscopy was used to examine the effect of oxysterol insertion into normal and sickle RBC membranes and the total lipid extracts of the membranes. Examination of the FTIR C-H stretch and fingerprint regions reveal that the insertion of 7 alpha- and 7 beta-hydroxycholesterol has the greatest effect on the fluidity of RBC membranes and lipid extracts. The results confirm the observation that sterol molecules are oriented in the membrane so that the 7 position is located in the phospholipid head group region at the lipid/water interface. The substitution of a keto for a hydroxy group at the number seven position decreases the effect of the sterol on membrane packing.  相似文献   
78.
The trinuclear complex [L2Cu3(CF3CO2)4] (1) has been synthesized and its crystal structure determined. It consists of a linear arrangement of Cu(II) centers. The central copper atom is bonded to six oxygen atoms and has a tetragonally distorted octahedral geometry, while the terminal copper atoms are bonded to three oxygen and two nitrogen atoms and show a distorted square pyramidal geometry. The complex shows di-μ(O,O′) syn-syn carboxylate bridging as well as monoatomic (μ-O) bridging, along with phenolate (μ-O) oxygen bridging. Cryomagnetic investigations in the range 2-300 K revealed an antiferromagnetic spin exchange interaction with J = −95.7 cm−1, based on the isotropic exchange model Hex = −2J[S1 · S2 + S2 · S3].  相似文献   
79.
Neuronal polarization is facilitated by the formation of axons with parallel arrays of plus-end-out and dendrites with the nonuniform orientation of microtubules. In C. elegans, the posterior lateral microtubule (PLM) neuron is bipolar with its two processes growing along the anterior–posterior axis under the guidance of Wnt signaling. Here we found that loss of the Kinesin-13 family microtubule-depolymerizing enzyme KLP-7 led to the ectopic extension of axon-like processes from the PLM cell body. Live imaging of the microtubules and axonal transport revealed mixed polarity of the microtubules in the short posterior process, which is dependent on both KLP-7 and the minus-end binding protein PTRN-1. KLP-7 is positively regulated in the posterior process by planar cell polarity components of Wnt involving rho-1/rock to induce mixed polarity of microtubules, whereas it is negatively regulated in the anterior process by the unc-73/ced-10 cascade to establish a uniform microtubule polarity. Our work elucidates how evolutionarily conserved Wnt signaling establishes the microtubule polarity in neurons through Kinesin-13.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号