首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1147篇
  免费   85篇
  2023年   13篇
  2022年   24篇
  2021年   27篇
  2020年   25篇
  2019年   18篇
  2018年   36篇
  2017年   26篇
  2016年   31篇
  2015年   31篇
  2014年   54篇
  2013年   74篇
  2012年   102篇
  2011年   68篇
  2010年   38篇
  2009年   34篇
  2008年   37篇
  2007年   59篇
  2006年   37篇
  2005年   34篇
  2004年   44篇
  2003年   35篇
  2002年   47篇
  2001年   34篇
  2000年   38篇
  1999年   33篇
  1997年   8篇
  1996年   10篇
  1995年   10篇
  1994年   8篇
  1993年   10篇
  1992年   22篇
  1991年   12篇
  1990年   17篇
  1989年   8篇
  1988年   17篇
  1987年   11篇
  1986年   9篇
  1985年   5篇
  1984年   8篇
  1983年   6篇
  1982年   13篇
  1981年   9篇
  1980年   7篇
  1979年   4篇
  1978年   5篇
  1973年   4篇
  1971年   3篇
  1969年   3篇
  1968年   3篇
  1967年   5篇
排序方式: 共有1232条查询结果,搜索用时 781 毫秒
121.
This study describes a novel isolation procedure for major glycolipids from Bifidobacterium adolescentis 94 BIM. The procedure consists of the use of supercritical carbon dioxide (scCO(2)) with hydro-methanolic solution as co-solvent. The major glycolipids were isolated using the following operating conditions: pressure, 30 MPa, co-solvent concentration, 10% (9:1, methanol/water, v/v), CO(2) flow rate, 5 g/min, extraction time and temperature, 2h and 55 degrees C, respectively. The reference glycolipids sample was prepared by classical organic solvent extraction followed by chromatographic purification. All isolates were characterized by TLC and the major glycolipids additionally by enzyme linked immunosorbent (ELISA). Sixty milligrams of glycolipids with similar immunoreactivity as the reference glycolipids were isolated from 1g of freeze-dried biomass (6% of yield).  相似文献   
122.
123.
124.
S-adenosyl-L-methionine (AdoMet, 1mM) protects the stationary phase cells of Saccharomyces cerevisiae against the killing effect of acid (10mM HCl, pH approximately 2). Both the acid and the acid plus AdoMet treatment for 2h increased the plasma membrane H(+)-ATPase activity; thereafter it decreased to the basal level. AdoMet partially recovered the intracellular pH (pH(in)) that dropped in presence of acid. AdoMet treatment facilitated acid induced phospholipid biosynthesis as well as membrane proliferation, which was reflected in the cellular lipid composition.  相似文献   
125.
The mammalian bromodomain protein Brd4 interacts with mitotic chromosomes by binding to acetylated histone H3 and H4 and is thought to play a role in epigenetic memory. Mitotic cells are susceptible to antimicrotubule drugs. These drugs activate multiple response pathways and arrest cells at mitosis. We found that Brd4 was rapidly released from chromosomes upon treatment with antimicrotubule drugs, including the reversible agent nocodazole. Yet, when nocodazole was withdrawn, Brd4 was reloaded onto chromosomes, and cells proceeded to complete cell division. However, cells in which a Brd4 allele was disrupted (Brd4+/-), and expressing only half of the normal Brd4 levels, were defective in reloading Brd4 onto chromosomes. Consequently, Brd4+/- cells were impaired in their ability to recover from nocodazole-induced mitotic arrest: a large fraction of +/- cells failed to reach anaphase after drug withdrawal, and those that entered anaphase showed an increased frequency of abnormal chromosomal segregation. The reloading defect observed in Brd4+/- cells coincided with selective hypoacetylation of lysine residues on H3 and H4. The histone deacetylase inhibitor trichostatin A increased global histone acetylation and perturbed nocodazole-induced Brd4 unloading. Brd4 plays an integral part in a cellular response to drug-induced mitotic stress by preserving a properly acetylated chromatin status.  相似文献   
126.
127.
We investigated the signaling basis for tubule pathology during fibrosis after renal injury. Numerous signaling pathways are activated physiologically to direct tubule regeneration after acute kidney injury (AKI) but several persist pathologically after repair. Among these, transforming growth factor (TGF)-β is particularly important because it controls epithelial differentiation and profibrotic cytokine production. We found that increased TGF-β signaling after AKI is accompanied by PTEN loss from proximal tubules (PT). With time, subpopulations of regenerating PT with persistent loss of PTEN (phosphate and tension homolog) failed to differentiate, became growth arrested, expressed vimentin, displayed profibrotic JNK activation, and produced PDGF-B. These tubules were surrounded by fibrosis. In contrast, PTEN recovery was associated with epithelial differentiation, normal tubule repair, and less fibrosis. This beneficial outcome was promoted by TGF-β antagonism. Tubule-specific induction of TGF-β led to PTEN loss, JNK activation, and fibrosis even without prior AKI. In PT culture, high TGF-β depleted PTEN, inhibited differentiation, and activated JNK. Conversely, TGF-β antagonism increased PTEN, promoted differentiation, and decreased JNK activity. Cre-Lox PTEN deletion suppressed differentiation, induced growth arrest, and activated JNK. The low-PTEN state with JNK signaling and fibrosis was ameliorated by contralateral nephrectomy done 2 wk after unilateral ischemia, suggesting reversibility of the low-PTEN dysfunctional tubule phenotype. Vimentin-expressing tubules with low-PTEN and JNK activation were associated with fibrosis also after tubule-selective AKI, and with human chronic kidney diseases of diverse etiology. By preventing tubule differentiation, the low-PTEN state may provide a platform for signals initiated physiologically to persist pathologically and cause fibrosis after injury.  相似文献   
128.
Macrophage migration inhibitory factor (MIF) is responsible for proinflammatory reactions in various infectious and non-infectious diseases. We have investigated the mechanism of anti-inflammatory activity of epoxyazadiradione, a limonoid purified from neem (Azadirachta indica) fruits, against MIF. Epoxyazadiradione inhibited the tautomerase activity of MIF of both human (huMIF) and malaria parasites (Plasmodium falciparum (PfMIF) and Plasmodium yoelii (PyMIF)) non-competitively in a reversible fashion (K(i), 2.11-5.23 μm). Epoxyazadiradione also significantly inhibited MIF (huMIF, PyMIF, and PfMIF)-mediated proinflammatory activities in RAW 264.7 cells. It prevented MIF-induced macrophage chemotactic migration, NF-κB translocation to the nucleus, up-regulation of inducible nitric-oxide synthase, and nitric oxide production in RAW 264.7 cells. Epoxyazadiradione not only exhibited anti-inflammatory activity in vitro but also in vivo. We tested the anti-inflammatory activity of epoxyazadiradione in vivo after co-administering LPS and MIF in mice to mimic the disease state of sepsis or bacterial infection. Epoxyazadiradione prevented the release of proinflammatory cytokines such as IL-1α, IL-1β, IL-6, and TNF-α when LPS and PyMIF were co-administered to BALB/c mice. The molecular basis of interaction of epoxyazadiradione with MIFs was explored with the help of computational chemistry tools and a biological knowledgebase. Docking simulation indicated that the binding was highly specific and allosteric in nature. The well known MIF inhibitor (S,R)-3-(4-hydroxyphenyl)-4,5-dihydro-5-isoxazole acetic acid methyl ester (ISO-1) inhibited huMIF but not MIF of parasitic origin. In contrast, epoxyazadiradione inhibited both huMIF and plasmodial MIF, thus bearing an immense therapeutic potential against proinflammatory reactions induced by MIF of both malaria parasites and human.  相似文献   
129.
We have investigated the gastroprotective effect of SEGA (3a), a newly synthesized tryptamine-gallic acid hybrid molecule against non-steroidal anti-inflammatory drug (NSAID)-induced gastropathy with mechanistic details. SEGA (3a) prevents indomethacin (NSAID)-induced mitochondrial oxidative stress (MOS) and dysfunctions in gastric mucosal cells, which play a pathogenic role in inducing gastropathy. SEGA (3a) offers this mitoprotective effect by scavenging of mitochondrial superoxide anion (O(2)(·-)) and intramitochondrial free iron released as a result of MOS. SEGA (3a) in vivo blocks indomethacin-mediated MOS, as is evident from the inhibition of indomethacin-induced mitochondrial protein carbonyl formation, lipid peroxidation, and thiol depletion. SEGA (3a) corrects indomethacin-mediated mitochondrial dysfunction in vivo by restoring defective electron transport chain function, collapse of transmembrane potential, and loss of dehydrogenase activity. SEGA (3a) not only corrects mitochondrial dysfunction but also inhibits the activation of the mitochondrial pathway of apoptosis by indomethacin. SEGA (3a) inhibits indomethacin-induced down-regulation of bcl-2 and up-regulation of bax genes in gastric mucosa. SEGA (3a) also inhibits indometacin-induced activation of caspase-9 and caspase-3 in gastric mucosa. Besides the gastroprotective effect against NSAID, SEGA (3a) also expedites the healing of already damaged gastric mucosa. Radiolabeled ((99m)Tc-labeled SEGA (3a)) tracer studies confirm that SEGA (3a) enters into mitochondria of gastric mucosal cell in vivo, and it is quite stable in serum. Thus, SEGA (3a) bears an immense potential to be a novel gastroprotective agent against NSAID-induced gastropathy.  相似文献   
130.
Dey K  Roy S  Ghosh B  Chakraborti S 《Biochimie》2012,94(4):991-1000
We have recently reported that α(2)β(1) and α(1)β(1) isozymes of Na(+)/K(+)-ATPase (NKA) are localized in the caveolae whereas only the α(1)β(1) isozyme of NKA is localized in the non-caveolae fraction of pulmonary artery smooth muscle cell membrane. It is well known that different isoforms of NKA are regulated differentially by PKA and PKC, but the mechanism is not known in the caveolae of pulmonary artery smooth muscle cells. Herein, we examined whether this regulation occurs through phospholemman (PLM) in the caveolae. Our results suggest that PKC mediated phosphorylation of PLM occurs only when it is associated with the α(2) isoform of NKA, whereas phosphorylation of PLM by PKA occurs when it is associated with the α(1) isoform of NKA. To investigate the mechanism of regulation of α(2) isoform of NKA by PKC-mediated phosphorylation of PLM, we have purified PLM from the caveolae and reconstituted into the liposomes. Our result revealed that (i) in the reconstituted liposomes phosphorylated PLM (PKC mediated) stimulate NKA activity, which appears to be due to an increase in the turnover number of the enzyme; (ii) phosphorylated PLM did not change the affinity of the pump for Na(+); and (iii) even after phosphorylation by PKC, PLM still remains associated with the α(2) isoform of NKA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号