全文获取类型
收费全文 | 815篇 |
免费 | 65篇 |
专业分类
880篇 |
出版年
2023年 | 4篇 |
2022年 | 9篇 |
2021年 | 25篇 |
2020年 | 14篇 |
2019年 | 22篇 |
2018年 | 29篇 |
2017年 | 25篇 |
2016年 | 23篇 |
2015年 | 35篇 |
2014年 | 44篇 |
2013年 | 39篇 |
2012年 | 51篇 |
2011年 | 44篇 |
2010年 | 43篇 |
2009年 | 32篇 |
2008年 | 53篇 |
2007年 | 41篇 |
2006年 | 40篇 |
2005年 | 50篇 |
2004年 | 41篇 |
2003年 | 20篇 |
2002年 | 30篇 |
2001年 | 25篇 |
2000年 | 9篇 |
1999年 | 14篇 |
1998年 | 6篇 |
1997年 | 6篇 |
1996年 | 3篇 |
1995年 | 2篇 |
1994年 | 6篇 |
1993年 | 3篇 |
1992年 | 11篇 |
1991年 | 4篇 |
1990年 | 3篇 |
1989年 | 6篇 |
1988年 | 7篇 |
1987年 | 2篇 |
1986年 | 4篇 |
1985年 | 2篇 |
1984年 | 9篇 |
1983年 | 8篇 |
1981年 | 4篇 |
1980年 | 5篇 |
1979年 | 4篇 |
1978年 | 3篇 |
1976年 | 2篇 |
1973年 | 5篇 |
1972年 | 2篇 |
1971年 | 3篇 |
1970年 | 2篇 |
排序方式: 共有880条查询结果,搜索用时 12 毫秒
81.
Ribeiro FM Black SA Prado VF Rylett RJ Ferguson SS Prado MA 《Journal of neurochemistry》2006,99(1):1-12
Maintenance of acetylcholine (ACh) synthesis depends on the activity of the high-affinity choline transporter (CHT1), which is responsible for the reuptake of choline from the synaptic cleft into presynaptic neurons. In this review, we discuss the current understanding of mechanisms involved in the cellular trafficking of CHT1. CHT1 protein is mainly found in intracellular organelles, such as endosomal compartments and synaptic vesicles. The presence of CHT1 at the plasma membrane is limited by rapid endocytosis of the transporter in clathrin-coated pits in a mechanism dependent on a dileucine-like motif present in the carboxyl-terminal region of the transporter. The intracellular pool of CHT1 appears to constitute a reserve pool of transporters, important for maintenance of cholinergic neurotransmission. However, the physiological basis of the presence of CHT1 in intracellular organelles is not fully understood. Current knowledge about CHT1 indicates that stimulated and constitutive exocytosis, in addition to endocytosis, will have major consequences for regulating choline uptake. Future investigations of CHT1 trafficking should elucidate such regulatory mechanisms, which may aid in understanding the pathophysiology of diseases that affect cholinergic neurons, such as Alzheimer's disease. 相似文献
82.
The modulation by spinal nitric oxide (NO) of descending pathways travelling through the dorsal lateral funiculus (DLF) is a mechanism proposed for the antinociceptive effects of drugs that changes the NO metabolism. In this study we confirm that a surgical incision in the mid-plantar hind paw of rats reduces the threshold to mechanical stimulation with von Frey filaments. The incisional pain was further increased in rats with ipsilateral DLF lesion. Intrathecal L-NOARG (50-300 microg), or SIN-1 (0.1-5.0 microg) reduced, while SIN-1 (10 and 20 microg) intensified the incisional pain in rats with sham or effective lesion of the DLF. Stimulation of the dorsal raphe (DRN) or anterior pretectal (APtN) nuclei with stepwise increased electrical currents (7, 14, 21, 28 and 35 microA r.m.s.) produced a current-related reduction of the incisional pain. These nuclei activate pain inhibitory pathways that descend to the spinal cord mainly through the DLF. Intrathecal SIN-1 (5 microg) reduced, SIN-1 (20 microg) decreased and L-NOARG (150 microg) did not change the EC50 for the DRN or APtN stimulation-induced reduction of incisional pain. We conclude that the antinociceptive effects of L-NOARG or low doses of SIN-1 are independent on the activity of descending pain control pathways travelling via the DLF, but the antinociceptive effect of stimulating electrically the DRN or APtN can be summated to the effect of low dose of SIN-1 or overcome by the high dose of SIN-1. 相似文献
83.
Tatiana Lan?as David I Kasahara Carla M Prado Iolanda F L C Tibério Milton A Martins Marisa Dolhnikoff 《Journal of applied physiology》2006,100(5):1610-1616
The peripheral lung parenchyma has been studied as a component of the asthmatic inflammatory response. During induced constriction, tissue resistance increases in different asthma models. Approximately 60% of the asthmatic patients show early and late responses. The late response is characterized by more severe airway obstruction. In the present study, we evaluated lung parenchymal strips mechanics in ovalbumin-sensitized guinea pigs, trying to reproduce both early and late inflammatory responses. Oscillatory mechanics of lung strips were performed in a control group (C), in an early response group (ER), and in two late response groups: 17 h (L1) and 72 h (L2) after the last ovalbumin challenge. Measurements of resistance and elastance were obtained before and after ovalbumin challenge in C and ER groups and before and after acetylcholine challenge in all groups. Using morphometry, we assessed the density of eosinophils and smooth muscle cells, as well as collagen and elastin content in lung strips. The baseline and postagonist values of resistance and elastance were increased in ER, L1, and L2 groups compared with C (P < or = 0.001). The morphometric analysis showed an increase in alveolar eosinophil density in ER and L2 groups compared with C (P < 0.05). There was a significant correlation between eosinophil density in parenchymal strips of C, L1, and L2 groups and values of resistance and elastance postacetylcholine (r = 0.71, P = 0.001 and r = 0.74, P < 0.001, respectively). The results show that the lung parenchyma is involved in the late response, and the constriction response in this phase is related to the eosinophilic inflammation. 相似文献
84.
Jaramillo C de Diego JE Hamdouchi C Collins E Keyser H Sánchez-Martínez C del Prado M Norman B Brooks HB Watkins SA Spencer CD Dempsey JA Anderson BD Campbell RM Leggett T Patel B Schultz RM Espinosa J Vieth M Zhang F Timm DE 《Bioorganic & medicinal chemistry letters》2004,14(24):4855-6099
We have identified a novel structural class of protein serine/threonine kinase inhibitors comprised of an aminoimidazo[1,2-a]pyridine nucleus. Compounds from this family are shown to potently inhibit cyclin-dependent kinases by competing with ATP for binding to a catalytic subunit of the protein. Structure-based design approach was used to direct this chemical scaffold toward generating potent and selective CDK2 inhibitors. The discovery of this new class of ATP-site directed protein kinase inhibitors, aminoimidazo[1,2-a]pyridines, provides the basis of new medicinal chemistry tool in search for an effective treatment of cancer and other diseases that involve protein kinase signaling pathways. 相似文献
85.
Prado AS 《Plastic and reconstructive surgery》2012,129(1):224e-225e
86.
Nunes Bdo N Ramos SB Savegnago RP Ledur MC Nones K Klein CH Munari DP 《Genetics and molecular biology》2011,34(3):429-434
The objective of this study was to estimate genetic and phenotypic correlations of body weight at 6 weeks of age (BW6), as well as final carcass yield, and moisture, protein, fat and ash contents, using data from 3,422 F2 chickens originated from reciprocal cross between a broiler and a layer line. Variance components were estimated by the REML method, using animal models for evaluating random additive genetic and fixed contemporary group (sex, hatch and genetic group) effects. The heritability estimates (h(2)) for BW6, carcass yield and percentage of carcass moisture were 0.31 ± 0.07, 0.20 ± 0.05 and 0.33 ± 0.07, respectively. The h(2) for the percentages of protein, fat and ash on a dry matter basis were 0.48 ± 0.09, 0.55 ± 0.10 and 0.36 ± 0.08, respectively. BW6 had a positive genetic correlation with fat percentage in the carcass, but a negative one with protein and ash contents. Carcass yield, thus, appears to have only low genetic association with carcass composition traits. The genetic correlations observed between traits, measured on a dry matter basis, indicated that selection for carcass protein content may favor higher ash content and a lower percentage of carcass fat. 相似文献
87.
Simone S. Prado Kim Y. Hung Matthew P. Daugherty Rodrigo P. P. Almeida 《Applied and environmental microbiology》2010,76(4):1261-1266
Impacts of climate change on organisms are already apparent, with effects ranging from the individual to ecosystem scales. For organisms engaged in mutualisms, climate may affect population performance directly or indirectly through mediated effects on their mutualists. We tested this hypothesis for two stink bugs, Acrosternum hilare and Murgantia histrionica, and their gut-associated symbionts. We reared these species at two constant temperatures, 25 and 30°C, and monitored population demographic parameters and the presence of gut-associated symbionts with diagnostic PCR primer sets. Both stink bugs lost their respective gut symbionts within two generations at 30°C. In addition, the insect survivorship and reproductive rates of both A. hilare and M. histrionica at 30°C were lower than at 25°C. Other demographic parameters also indicated a decrease in overall insect fitness at the high temperature. Collectively our data showed that the decrease in host fitness was coupled with, and potentially mediated by, symbiont loss at 30°C. This work illustrates the need to better understand the biology of animal-symbiont associations and the consequences of local climate for the dynamics of these interactions.The effect of climate on organisms, communities, and the environment at large has become a pressing issue for biologists and environmental scientists. Recent studies indicate that previous forecasts were conservative in their predictions for the magnitude of global warming (29). Up-to-date models suggest that the global mean surface temperature will increase by 1.8 to 4°C by the year 2100 (11). The ecological impact of such warming is already apparent (35) in the effects seen on species fitness (24), range shifts (22), species interactions (10), and community structure (32).It is important to note that many macroorganisms live in symbiosis with microbes and that host fitness may be affected indirectly by higher temperatures due to the disruption of mutualistic relationships. Some corals, for example, have symbiotic relationships with photosynthesizing dinoflagellates (zoothanxellae) that provide them with nutrients (31). Higher water temperatures in reef ecosystems, among other factors, induce the expulsion of microbial symbionts by the host, resulting in coral bleaching (15). Therefore, it is plausible that observed effects of climate on species distribution or performance might stem from disruption of symbiotic interactions as much as from direct effects on host biology.Despite the current interest in insect-microbe symbioses, the vast majority of such systems have been poorly studied. A group of insects that has recently received some attention are the true bugs (Hemiptera, Pentatomomorpha). Studies in the early 1900s suggested that mutualistic bacteria colonized a portion of the gut of insects in different pentatomomorphan families (9). More specifically, monocultures of bacteria were present in high densities in the crypt- (or cecum-) bearing organ preceding the hindgut of hosts, with different bacterial taxa associated with different true bug families. Furthermore, studies have shown that these symbionts are mutualistic (1, 8, 13, 14, 26). Among these bug families, the stink bugs (Pentatomidae) have been shown to depend on their gut symbionts (1). Pentatomid symbionts are polyphyletic and closely related to plant-associated bacteria in the genera Erwinia and Pantoea (25). Although the mechanism of symbiont vertical transmission is poorly understood, females seem to smear the surface of eggs with bacteria while ovipositing (3). Aposymbiotic first instars hatch but remain on the surface of eggs and acquire the symbiont by probing on the egg surface, as evidenced by the fact that surface sterilization of egg masses generates aposymbiotic individuals (1, 26, 28).Climate change has already affected stink bug performance and geographic range (19, 20). In Japan, populations of two pentatomid species, Nezara viridula and N. antennata, have shifted northwards and to higher elevations, respectively, over the last 50 years (33). However, we found previously that for one of these species high temperature eliminated gut symbionts, without any clear decrease in host fitness (27). Thus, it remains unclear whether temperature change played a role, either directly or indirectly, in these geographic shifts. To better understand the extent to which temperature mediates stink bug ecology and prevalence of their gut bacteria, we conducted laboratory studies with two pentatomid species, Acrosternum hilare and Murgantia histrionica. We show that high temperature affects the symbiotic relationship, with concomitant reduction in insect fitness. 相似文献
88.
Raquel Gutiérrez-González Gregorio R Boto Cristina Fernández-Pérez Náyade del Prado 《BMC neurology》2010,10(1):93
Background
Infection is a major complication of cerebrospinal fluid shunting procedures. The present report assesses the efficacy of such catheters in both shunts and external ventricular drains (EVDs) against infection and particularly against Staphylococcus spp. infection. 相似文献89.
Jacqueline A. Sullivan Julie R. Dumont Sara Memar Miguel Skirzewski Jinxia Wan Maryam H. Mofrad Hassam Zafar Ansari Yulong Li Lyle Muller Vania F. Prado Marco A. M. Prado Lisa M. Saksida Timothy J. Bussey 《Genes, Brain & Behavior》2021,20(1):e12705
Many neurodegenerative and neuropsychiatric diseases and other brain disorders are accompanied by impairments in high-level cognitive functions including memory, attention, motivation, and decision-making. Despite several decades of extensive research, neuroscience is little closer to discovering new treatments. Key impediments include the absence of validated and robust cognitive assessment tools for facilitating translation from animal models to humans. In this review, we describe a state-of-the-art platform poised to overcome these impediments and improve the success of translational research, the Mouse Translational Research Accelerator Platform (MouseTRAP), which is centered on the touchscreen cognitive testing system for rodents. It integrates touchscreen-based tests of high-level cognitive assessment with state-of-the art neurotechnology to record and manipulate molecular and circuit level activity in vivo in animal models during human-relevant cognitive performance. The platform also is integrated with two Open Science platforms designed to facilitate knowledge and data-sharing practices within the rodent touchscreen community, touchscreencognition.org and mousebytes.ca. Touchscreencognition.org includes the Wall, showcasing touchscreen news and publications, the Forum, for community discussion, and Training, which includes courses, videos, SOPs, and symposia. To get started, interested researchers simply create user accounts. We describe the origins of the touchscreen testing system, the novel lines of research it has facilitated, and its increasingly widespread use in translational research, which is attributable in part to knowledge-sharing efforts over the past decade. We then identify the unique features of MouseTRAP that stand to potentially revolutionize translational research, and describe new initiatives to partner with similar platforms such as McGill's M3 platform (m3platform.org). 相似文献
90.
Shri Lak Nanjan Chandran Anuj Tiwari Anselmo Alves Lustosa Betul Demir Bob Bowers Rachel Gimenes Rodrigues Albuquerque Renata Bilion Ruiz Prado Saba Lambert Hiroyuki Watanabe Juanita Haagsma Jan Hendrik Richardus 《PLoS neglected tropical diseases》2021,15(3)
BackgroundLeprosy is a chronic bacterial infection caused by Mycobacterium leprae, which may lead to physical disability, stigma, and discrimination. The chronicity of the disease and disabilities are the prime contributors to the disease burden of leprosy. The current figures of the disease burden in the 2017 global burden of disease study, however, are considered to be under-estimated. In this study, we aimed to systematically review the literature and perform individual patient data meta-analysis to estimate new disability weights for leprosy, using Health-Related Quality of Life (HRQOL) data.Methodology/principal findingsThe search strategy included all major databases with no restriction on language, setting, study design, or year of publication. Studies on human populations that have been affected by leprosy and recorded the HRQOL with the Short form tool, were included. A consortium was formed with authors who could share the anonymous individual-level data of their study. Mean disability weight estimates, sorted by the grade of leprosy disability as defined by WHO, were estimated for individual participant data and pooled using multivariate random-effects meta-analysis. Eight out of 14 studies from the review were included in the meta-analysis due to the availability of individual-level data (667 individuals). The overall estimated disability weight for grade 2 disability was 0.26 (95%CI: 0.18–0.34). For grade 1 disability the estimated weight was 0.19 (95%CI: 0.13–0.26) and for grade 0 disability it was 0.13 (95%CI: 0.06–0.19). The revised disability weight for grade 2 leprosy disability is four times higher than the published GBD 2017 weights for leprosy and the grade 1 disability weight is nearly twenty times higher.Conclusions/significanceThe global burden of leprosy is grossly underestimated. Revision of the current disability weights and inclusion of disability caused in individuals with grade 0 leprosy disability will contribute towards a more precise estimation of the global burden of leprosy. 相似文献