首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1213篇
  免费   66篇
  国内免费   4篇
  2023年   8篇
  2022年   24篇
  2021年   32篇
  2020年   15篇
  2019年   24篇
  2018年   37篇
  2017年   40篇
  2016年   62篇
  2015年   61篇
  2014年   78篇
  2013年   113篇
  2012年   118篇
  2011年   105篇
  2010年   63篇
  2009年   43篇
  2008年   72篇
  2007年   68篇
  2006年   40篇
  2005年   46篇
  2004年   48篇
  2003年   40篇
  2002年   29篇
  2001年   6篇
  2000年   13篇
  1999年   8篇
  1998年   8篇
  1997年   6篇
  1996年   6篇
  1995年   6篇
  1994年   3篇
  1993年   2篇
  1992年   5篇
  1991年   2篇
  1990年   2篇
  1989年   5篇
  1987年   2篇
  1986年   4篇
  1985年   13篇
  1984年   10篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1966年   1篇
  1965年   1篇
排序方式: 共有1283条查询结果,搜索用时 15 毫秒
91.
92.
BackgroundThe disease course of human immunodeficiency virus (HIV) is often altered by existing or newly acquired coincident infections.Conclusions/SignificanceWe were unable to find a significant effect of W. bancrofti infection or its treatment on HIV clinical course or surrogate markers of HIV disease progression though we recognized that our study was limited by the smaller than predicted sample size and by the use of ART in half of the patients. Treatment of W. bancrofti coinfection in HIV positive subjects (as is usual in mass drug administration campaigns) did not represent an increased risk to the subjects, and should therefore be considered for PLWHA living in W. bancrofti endemic areas.

Trial Registration

ClinicalTrials.gov NCT00344279  相似文献   
93.
The interactions of transition metals with the prion protein (PrP) are well-documented and characterized, however, there is no consensus on their role in either the physiology of PrP or PrP-related neurodegenerative disorders. PrP has been reported to protect cells from the toxic stimuli of metals. By employing a cell viability assay, we examined the effects of various concentrations of Cu2+, Zn2+, Mn2+, and Co2+ on Zpl (Prnp -/-) and ZW (Prnp +/+) hippocampus-derived mouse neuronal cells. Prnp -/- Zpl cells were more sensitive to all four metals than PrP-expressing Zw cells. However, when we introduced PrP or only the empty vector into Zpl cells, we could not discern any protective effect associated with the presence of PrP. This observation was further corroborated when assessing the toxic effect of metals by propidium-iodide staining and fluorescence activated cell sorting analysis. Thus, our results on this mouse cell culture model do not seem to support a strong protective role for PrP against transition metal toxicity and also emphasize the necessity of extreme care when comparing cells derived from PrP knock-out and wild type mice.  相似文献   
94.

Purpose

To assess whether T1 relaxation time of tumors may be used to assess response to bevacizumab anti-angiogenic therapy. Procedures: 12 female nude mice bearing subcutaneous SKOV3ip1-LC ovarian tumors were administered bevacizumab (6.25ug/g, n=6) or PBS (control, n=6) therapy twice a week for two weeks. T1 maps of tumors were generated before, two days, and 2 weeks after initiating therapy. Tumor weight was assessed by MR and at necropsy. Histology for microvessel density, proliferation, and apoptosis was performed.

Results

Bevacizumab treatment resulted in tumor growth inhibition (p<0.04, n=6), confirming therapeutic efficacy. Tumor T1 relaxation times increased in bevacizumab treated mice 2 days and 2 weeks after initiating therapy (p<.05, n=6). Microvessel density decreased 59% and cell proliferation (Ki67+) decreased 50% in the bevacizumab treatment group (p<.001, n=6), but not apoptosis.

Conclusions

Findings suggest that increased tumor T1 relaxation time is associated with response to bevacizumab therapy in ovarian cancer model and might serve as an early indicator of response.  相似文献   
95.
We recently documented the identification of a 26.5 kDa protein named BmNox in the gut fluid of Nistari strain of Bombyx mori, which possessed antiviral activity against BmNPV in vitro. In this report, we report the characterization of the full‐length gene encoding BmNOX and the levels of expression of this gene in select tissues of silkworm larvae from a BmNPV‐susceptible and a BmNPV‐resistant strain to the defense capability in Bombyx mori larvae challenged with BmNPV. We also evaluated the BmNox expression in various stages of larval life of a resistant and a susceptible strain of Bombyx mori selected from among a panel of strains of silkworm. Nistari, a multivoltine strain of silkworm, expressed BmNOX during all five larval stages, and were highly resistant to BmNPV infection. In sharp contrast, CSR2, a bivoltine strain, showed weaker expression of BmNOX in the anterior midgut in larval life and was highly susceptible to BmNPV infection. BmNOX is a secretory protein with dual expression in gut fluid and mid gut tissue. BmNOX is expressed heavily in the posterior mid gut, with weaker expression in the fore‐ and mid‐gut regions. © 2010 Wiley Periodicals, Inc.  相似文献   
96.
97.
Systemic acquired resistance (SAR) is a form of defense that provides resistance against a broad spectrum of pathogens in plants. Previous work indicates a role for plastidial glycerolipid biosynthesis in SAR. Specifically, mutations in FATTY ACID DESATURASE7 (FAD7), which lead to reduced trienoic fatty acid levels and compromised plastidial lipid biosynthesis, have been associated with defective SAR. We show that the defective SAR in Arabidopsis (Arabidopsis thaliana) fad7-1 plants is not associated with a mutation in FAD7 but rather with a second-site mutation in GLABRA1 (GL1), a gene well known for its role in trichome formation. The compromised SAR in gl1 plants is associated with impairment in their cuticles. Furthermore, mutations in two other components of trichome development, GL3 and TRANSPARENT TESTA GLABRA1, also impaired cuticle development and SAR. This suggests an overlap in the biochemical pathways leading to cuticle and trichome development. Interestingly, exogenous application of gibberellic acid (GA) not only enhanced SAR in wild-type plants but also restored SAR in gl1 plants. In contrast to GA, the defense phytohoromes salicylic acid and jasmonic acid were unable to restore SAR in gl1 plants. GA application increased levels of cuticular components but not trichome formation on gl1 plants, thus implicating cuticle, but not trichomes, as an important component of SAR. Our findings question the prudence of using mutant backgrounds for genetic screens and underscore a need to reevaluate phenotypes previously studied in the gl1 background.Plants have evolved a large array of defense mechanisms to resist infection by pathogens. Upon recognition, the host plant initiates one or more signal transduction pathways that activate various plant defenses and thereby prevent pathogen colonization. In many cases, resistance is associated with increased expression of defense genes, including the pathogenesis-related (PR) genes and the accumulation of salicylic acid (SA) in the inoculated leaf. Induction of these responses is accompanied by localized cell death at the site of pathogen entry, which can often restrict the spread of pathogen to cells within and immediately surrounding the lesions. This phenomenon, known as the hypersensitive response, is one of the earliest visible manifestations of induced defense responses and resembles programmed cell death in animals (Dangl et al., 1996; Gray, 2002; Glazebrook, 2005; Kachroo and Kachroo, 2006). Concurrent with hypersensitive response development, defense reactions are triggered in sites both local and distal from the primary infection. This phenomenon, known as systemic acquired resistance (SAR), is accompanied by a local and systemic increase in SA and jasmonic acid (JA) and a concomitant up-regulation of a large set of defense genes (Durrant and Dong, 2004; Truman et al., 2007; Vlot et al., 2009).SAR involves the generation of a mobile signal in the primary leaves that, upon translocation to the distal tissues, activates defense responses resulting in broad-spectrum resistance. The production of the mobile signal takes places within 3 to 6 h of avirulent pathogen inoculation in the primary leaves (Smith-Becker et al., 1998), and the inoculated leaf must remain attached for at least 4 h after inoculation for immunity to be induced in the systemic tissues (Rasmussen et al., 1991). Mutations compromising SA synthesis or impairing SA, JA, or auxin signaling abolish SAR (Durrant and Dong, 2004; Truman et al., 2007, 2010). SAR is also dependent on the SALICYLIC ACID-BINDING PROTEIN2 (SABP2)-catalyzed conversion of methyl SA to SA in the distal tissues (Kumar and Klessig, 2003). Recent studies have suggested that methyl SA is the mobile signal required to initiate SAR in distal tissues in tobacco (Nicotiana tabacum; Park et al., 2007) and Arabidopsis (Arabidopsis thaliana; Liu et al., 2010), although another group reported a disparity in their findings related to the role of methyl SA in Arabidopsis (Attaran et al., 2009). Notably, the time point of requirement of SABP2 activity (between 48 and 72 h post inoculation; Park et al., 2009) does not coincide with the early generation and/or translocation of the mobile signal into distal tissues (within 6 h post inoculation).The mutations acyl carrier protein4 (acp4), long-chain acyl-CoA synthetase2 (lacs2), and lacs9, which are impaired in fatty acid (FA)/lipid flux (Schnurr et al., 2004; Xia et al., 2009), also compromise SAR (Xia et al., 2009). Detailed characterization has shown that the SAR defect in acp4, lacs2, and lacs9 mutants correlates with their defective cuticles. Analysis of the SAR response in acp4 plants has shown that these plants can generate the mobile signal required for inducing SAR but are unable to respond to it. It is likely that the defective cuticle in these plants impairs their ability to perceive the SAR signal, because mechanical abrasion of cuticles disrupts SAR in wild-type plants (Xia et al., 2009). This SAR-disruptive effect of cuticle abrasion is highly specific, because it does not alter local defenses and hinders SAR only during the time frame during which the mobile signal is translocated to distal tissues.SAR is also compromised in plants that contain a mutation in glycerol-3-phosphate dehydrogenase (Nandi et al., 2004). The glycerol-3-phosphate dehydrogenase (GLY1) reduces dihydroxyacetone phosphate to generate glycerol-3-phosphate, an obligatory component and precursor for the biosynthesis of all plant glycerolipids. Consequently, a mutation in GLY1 results in reduced carbon flux through the prokaryotic pathway of lipid biosynthesis, which leads to a reduction in the hexadecatrienoic (16:3) FAs (Miquel et al., 1998; Kachroo et al., 2004). Carbon flux and SAR are also impaired in plants containing mutations in FATTY ACID DESATURASE7 (FAD7; Chaturvedi et al., 2008). The FAD7 enzyme desaturates 16:2 and 18:2 FA species present on plastidial lipids to 16:3 and 18:3, respectively. Consequently, the fad7 mutant plants accumulate significantly reduced levels of trienoic FAs (16:3 and 18:3). Compromised SAR in mutants affected in certain plastidial FA/lipid pathways has prompted the suggestion that plastidial FA/lipids participate in SAR (Chaturvedi et al., 2008). Such a tempting conclusion is also favored by the fact that SAR requires the DIR1-encoded nonspecific lipid transfer protein, which is required for the generation and/or translocation of the mobile signal (Maldonado et al., 2002). In addition, azelaic acid, a dicarboxylic acid, was recently shown to prime SA biosynthesis and thereby SAR (Jung et al., 2009). The fact that azelaic acid is derived from oleic acid, a FA well known for its role in defense (Kachroo et al., 2003, 2004, 2005, 2007, 2008; Chandra-Shekara et al., 2007; Jiang et al., 2009; Venugopal et al., 2009; Xia et al., 2009), further suggests that FA/lipids might participate in SAR.This study was undertaken to reexamine the role of the FA/lipid pathways in SAR and to determine the nature of the FA/lipid species mediating SAR in fad7-1 plants. Our results show that impaired FA/lipid flux is not associated with compromised SAR in fad7-1 plants but, rather, with an abnormal cuticle, which is the result of a nonallelic mutation in the GLABRA1 (GL1) gene. Besides GL1, other mutations affecting trichome formation also compromised cuticle and thereby SAR. A compensatory effect of exogenous GA on gl1 plants suggests that GA might participate in resistance to bacterial pathogens by restoring cuticle formation.  相似文献   
98.
The present study was directed to the production of N-acetyl-D-glucosamine using endochitinase and chitobiase from fungal cultures in solid culturing. Fifteen fungal strains were evaluated for endochitinase and chitobiase production under solid-state fermentation using agro-industrial residues, of which Penicillium aculeatum NRRL 2129 showed maximum endochitinase activity whereas Trichoderma harzianum TUBF 927 showed maximum chitobiase activity. Eleven substrates, alone and in combination with chitin, were evaluated for the enzyme production. Optimization of physico-chemical parameters such as incubation period and initial moisture content, and nutritional parameters such as chitin source, inorganic and organic nitrogen sources, were carried out. Optimization resulted in more than 3-fold increase in endochitinase production (from 3.5 to 12.53 U/g dry weight of substrate) and about 1.5-fold increase in chitobiase production (from 1.6 to 2.25 U/g dry weight of substrate). Studies on the degradation of colloidal chitin to N-acetyl-D-glucosamine showed improved efficiency when endochitinase and chitobiase were used in combination.  相似文献   
99.
A previously introduced kinetic-rate constant (k/k(0)) method, where k and k(0) are the folding (unfolding) rate constants in the mutant and the wild-type forms, respectively, of a protein, has been applied to obtain qualitative information about structure in the transition state ensemble (TSE) of bovine pancreatic ribonuclease A (RNase A), which contains four native disulfide bonds. The method compares the folding (unfolding) kinetics of RNase A, with and without a covalent crosslink and tests whether the crosslinked residues are associated in the folding (unfolding) transition state (TS) of the noncrosslinked version. To confirm that the fifth disulfide bond has not introduced a significant structural perturbation, we solved the crystal structure of the V43C-R85C mutant to 1.6 A resolution. Our findings suggest that residues Val43 and Arg85 are not associated, and that residues Ala4 and Val118 may form nonnative contacts, in the folding (unfolding) TSE of RNase A.  相似文献   
100.
The problem of predicting the enzymes and non-enzymes from the protein sequence information is still an open problem in bioinformatics. It is further becoming more important as the number of sequenced information grows exponentially over time. We describe a novel approach for predicting the enzymes and non-enzymes from its amino-acid sequence using artificial neural network (ANN). Using 61 sequence derived features alone we have been able to achieve 79 percent correct prediction of enzymes/non-enzymes (in the set of 660 proteins). For the complete set of 61 parameters using 5-fold cross-validated classification, ANN model reveal a superior model (accuracy = 78.79 plus or minus 6.86 percent, Q(pred) = 74.734 plus or minus 17.08 percent, sensitivity = 84.48 plus or minus 6.73 percent, specificity = 77.13 plus or minus 13.39 percent). The second module of ANN is based on PSSM matrix. Using the same 5-fold cross-validation set, this ANN model predicts enzymes/non-enzymes with more accuracy (accuracy = 80.37 plus or minus 6.59 percent, Q(pred) = 67.466 plus or minus 12.41 percent, sensitivity = 0.9070 plus or minus 3.37 percent, specificity = 74.66 plus or minus 7.17 percent).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号