排序方式: 共有163条查询结果,搜索用时 0 毫秒
91.
Prachi R. Bapat Ashish R. Satav Aliabbas A. Husain Seema D. Shekhawat Anuja P. Kawle Justin J. Chu Hemant J. Purohit Hatim F. Daginawala Girdhar M. Taori Rajpal S. Kashyap 《PloS one》2015,10(8)
Lack of diagnostic capacity has been a crucial barrier preventing an effective response to the challenges of malnutrition and tuberculosis (TB). Point-of-care diagnostic tests for TB in immuno-incompetent, malnourished population are thus needed to ensure rapid and accurate detection. The aim of the study was to identify potential biomarkers specific for TB infection and progression to overt disease in the malnourished population of Melghat. A prospective cohort study was conducted in the year 2009 through 2011 in six villages of the Melghat region. 275 participants consisting of malnourished cases with a) active TB (n = 32), b) latent TB infection (n = 90), c) with no clinical or bacteriological signs of active or latent TB (n = 130) and healthy control subjects (n = 23) were recruited for the study. The proteome changes of the host serum in response to Mycobacterium tuberculosis (M.tb) infection were investigated using one dimensional electrophoresis in combination with matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Three most differentially expressed proteins; alpha-2-macroglobulin (A-2-M), sero-transferrin and haptoglobin were identified by MALDI-TOF MS analysis, which were up-regulated in the malnourished patients with active TB and down-regulated in the malnourished patients compared with the healthy controls. Additionally, follow-up studies indicated that the expression of these proteins increased to nearly two folds in patients who developed active disease from latent state. Our preliminary results suggest that A-2-M, sero-transferrin and haptoglobin may be clinically relevant host biomarkers for TB diagnosis and disease progression in the malnourished population. This study provides preliminary framework for an in-depth analysis of the biomarkers in larger well-characterized cohorts. Evaluation of these biomarkers in follow-up cases may further aid in improving TB diagnosis. 相似文献
92.
Anand Thirunavukarasou Prachi Singh Gokulapriya Govindarajalu Venkateshwarlu Bandi Sudhakar Baluchamy 《Molecular and cellular biochemistry》2014,390(1-2):93-100
Controlled protein ubiquitination through E3 ubiquitin ligases and degradation via 26S proteasome machinery is required for orderly progression through cell cycle, chromatin remodeling, DNA repair, and development. Each cullin-dependent ubiquitin ligase (E3) complex can recruit various substrates for their degradation. Cullin 4A (CUL4A) and Cullin 4B (CUL4B) are members of cullin family proteins that mediate ubiquitin dependent proteolysis. Though, these two cul4 genes are functionally redundant, Cullin 4B is not a substitute for all the Cullin 4A functions. Published report has shown that CUL4A interacts with p53 and induces its decay. Although, CUL4A has been known to control several cellular processes, little is known about CUL4B functions. Therefore, in this study, we analyzed the role of CUL4B on p53 polyubiquitination. Our stable cell line and transient transfection studies show that CUL4B indeed interacts with p53 and induces its polyubiquitination. Importantly, both CUL4A and CUL4B overexpressing cells show almost equal levels of p53 polyubiquitination. Moreover, we observed an increased level of polyubiquitination on p53 in CUL4B overexpressing stable cell line upon treatment with siRNA specific for CUL4A indicating that CUL4B plays a vital role in p53 stability. In addition, we have observed the differential expression of CUL4B in various eukaryotic cell lines and mouse tissues suggesting the important role of CUL4B in various tissues. Together, these observations establish an important negative regulatory role of CUL4B on p53 stability. 相似文献
93.
Vikas Dutt Vikram Saini Prachi Gupta Nirmaljeet Kaur Manju Bala Ravindra Gujar Anita Grewal Sanjeev Gupta Anita Dua Ashwani Mittal 《Biochimica et Biophysica Acta (BBA)/General Subjects》2018,1862(4):895-906
Background
Elevated levels of inflammatory molecules are key players in muscle wasting/atrophy leading to human morbidity. TNFα is a well-known pro-inflammatory cytokine implicated in the pathogenesis of muscle wasting under diverse clinical settings. S-allyl cysteine (SAC), an active component of garlic (Allium sativum), has established anti-oxidant and anti-inflammatory effects in various cell types. However, the impact of SAC on skeletal muscle pathology remains unexplored. Owing to the known anti-inflammatory properties of SAC, we investigated whether pre-treatment with SAC has a protective role in TNFα-induced atrophy in cultured myotubes.Methods and results
C2C12 myotubes were treated with TNFα (100 ng/ml) in the presence or absence of SAC (0.01 mM). TNFα treatment induced atrophy in myotubes by up-regulating various proteolytic systems i.e. cathepsin L, calpain, ubiquitin-proteasome E3-ligases (MuRF1/atrogin1), caspase 3 and autophagy (Beclin1/LC3B). TNFα also induced the activation of NFκB by stimulating the degradation of IκBα (inhibitor of NFκB), in myotubes. The alterations in proteolytic systems likely contribute to the degradation of muscle-specific proteins and reduce the myotube length, diameter and fusion index. The SAC supplementation significantly impedes TNFα-induced protein loss and protects myotube morphology by suppressing protein catabolic systems and endogenous level of inflammatory molecules namely TNFα, IL-6, IL-1β, TNF-like weak inducer of apoptosis (TWEAK), fibroblast growth factor-inducible 14 (Fn14) and Nox.Conclusion and general significance
Our findings reveal anti-atrophic role for SAC, as it prevents alterations in protein metabolism and protects myotubes by regulating the level of inflammatory molecules and multiple proteolytic systems responsible for muscle atrophy. 相似文献94.
95.
96.
Ece A. Mutlu Ali Keshavarzian John Losurdo Garth Swanson Basile Siewe Christopher Forsyth Audrey French Patricia DeMarais Yan Sun Lars Koenig Stephen Cox Phillip Engen Prachi Chakradeo Rawan Abbasi Annika Gorenz Charles Burns Alan Landay 《PLoS pathogens》2014,10(2)
HIV progression is characterized by immune activation and microbial translocation. One factor that may be contributing to HIV progression could be a dysbiotic microbiome. We therefore hypothesized that the GI mucosal microbiome is altered in HIV patients and this alteration correlates with immune activation in HIV. 121 specimens were collected from 21 HIV positive and 22 control human subjects during colonoscopy. The composition of the lower gastrointestinal tract mucosal and luminal bacterial microbiome was characterized using 16S rDNA pyrosequencing and was correlated to clinical parameters as well as immune activation and circulating bacterial products in HIV patients on ART. The composition of the HIV microbiome was significantly different than that of controls; it was less diverse in the right colon and terminal ileum, and was characterized by loss of bacterial taxa that are typically considered commensals. In HIV samples, there was a gain of some pathogenic bacterial taxa. This is the first report characterizing the terminal ileal and colonic mucosal microbiome in HIV patients with next generation sequencing. Limitations include use of HIV-infected subjects on HAART therapy. 相似文献
97.
Sunflower seedlings subjected to 120 mM NaCl stress exhibit high total peroxidase activity, differential expression of its isoforms and accumulation of lipid hydroperoxides. This coincides with high specific activity of phospholipid hydroperoxide glutathione peroxidase (PHGPX) in the 10,000g supernatant from the homogenates of 2–6 d old seedling cotyledons. An upregulation of PHGPX activity by NaCl is evident from Western blot analysis. Confocal laser scanning microscopic (CLSM) analysis of sections of cotyledons incubated with anti-GPX4 (PHGPX) antibody highlights an enhanced cytosolic accumulation of PHGPX, particularly around the secretory canals. Present work, thus, highlights sensing of NaCl stress in sunflower seedlings in relation with lipid hydroperoxide accumulation and its scavenging through an upregulation of PHGPX activity in the cotyledons. 相似文献
98.
Jitender Singh Prachi Pandey Donald James Kottakota Chandrasekhar V. Mohan Murali Achary Tanushri Kaul Baishnab C. Tripathy Malireddy K. Reddy 《Plant biotechnology journal》2014,12(9):1217-1230
Despite the declarations and collective measures taken to eradicate hunger at World Food Summits, food security remains one of the biggest issues that we are faced with. The current scenario could worsen due to the alarming increase in world population, further compounded by adverse climatic conditions, such as increase in atmospheric temperature, unforeseen droughts and decreasing soil moisture, which will decrease crop yield even further. Furthermore, the projected increase in yields of C3 crops as a result of increasing atmospheric CO2 concentrations is much less than anticipated. Thus, there is an urgent need to increase crop productivity beyond existing yield potentials to address the challenge of food security. One of the domains of plant biology that promises hope in overcoming this problem is study of C3 photosynthesis. In this review, we have examined the potential bottlenecks of C3 photosynthesis and the strategies undertaken to overcome them. The targets considered for possible intervention include RuBisCO, RuBisCO activase, Calvin–Benson–Bassham cycle enzymes, CO2 and carbohydrate transport, and light reactions among many others. In addition, other areas which promise scope for improvement of C3 photosynthesis, such as mining natural genetic variations, mathematical modelling for identifying new targets, installing efficient carbon fixation and carbon concentrating mechanisms have been touched upon. Briefly, this review intends to shed light on the recent advances in enhancing C3 photosynthesis for crop improvement. 相似文献
99.
Candidate gene polymorphisms among North Indians and their association with schizophrenia in a case-control study 总被引:1,自引:0,他引:1
Knowledge of candidate gene polymorphisms in a population is useful for a variety of gene-disease association studies, particularly
for some complex traits. A number of candidate genes, a majority of them from the monoaminergic pathway in the brain, have
been very popular in association studies with schizophrenia, a neuropsychiatric disorder. In this study diallelic/multiallelic
polymorphisms in some dopaminergic, serotonergic and membrane-phospholipid-related genes have been evaluated in a control
population recruited from North India. Association, if any, of these allelic variants with schizopherenia has been tested
using a case-control approach. The case data have been taken from our published family-based association studies in schizophrenia.
Of the eight genes tested in this study, association with schizophrenia was observed for only two gene polymorphisms, one
in the promoter region of the serotonin 2A receptor gene and the other in the tryptophan hydroxylase gene. One new allele
for the dopamine transporter gene (with eight repeats, 570-bp size), not reported in any population so far, has been identified
in one individual in our sample. The data generated in this study, besides providing a normative background for various disease
association studies, are a significant contribution to the population-specific genome database, a currently growing requirement. 相似文献
100.
Cyclin D2 and the CDK substrate p220NPAT are required for self‐renewal of human embryonic stem cells
Klaus A. Becker Prachi N. Ghule Jane B. Lian Janet L. Stein Andre J. van Wijnen Gary S. Stein 《Journal of cellular physiology》2010,222(2):456-464
Self‐renewal of pluripotent human embryonic stem (hES) cells utilizes an abbreviated cell cycle that bypasses E2F/pRB‐dependent growth control. We investigated whether self‐renewal is alternatively regulated by cyclin/CDK phosphorylation of the p220NPAT/HiNF‐P complex to activate histone gene expression at the G1/S phase transition. We show that cyclin D2 is prominently expressed in pluripotent hES cells, but cyclin D1 eclipses cyclin D2 during differentiation. Depletion of cyclin D2 or p220NPAT causes a cell cycle defect in G1 reflected by diminished phosphorylation of p220NPAT, decreased cell cycle dependent histone H4 expression and reduced S phase progression. Thus, cyclin D2 and p220NPAT are principal cell cycle regulators that determine competency for self‐renewal in pluripotent hES cells. While pRB/E2F checkpoint control is relinquished in human ES cells, fidelity of physiological regulation is secured by cyclin D2 dependent activation of the p220NPAT/HiNF‐P mechanism that may explain perpetual proliferation of hES cells without transformation or tumorigenesis. J. Cell. Physiol. 222: 456–464, 2010. © 2009 Wiley‐Liss, Inc. 相似文献