首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2090篇
  免费   98篇
  国内免费   3篇
  2191篇
  2023年   13篇
  2022年   24篇
  2021年   46篇
  2020年   36篇
  2019年   39篇
  2018年   46篇
  2017年   28篇
  2016年   62篇
  2015年   86篇
  2014年   93篇
  2013年   140篇
  2012年   141篇
  2011年   177篇
  2010年   89篇
  2009年   79篇
  2008年   104篇
  2007年   105篇
  2006年   106篇
  2005年   100篇
  2004年   78篇
  2003年   72篇
  2002年   71篇
  2001年   35篇
  2000年   31篇
  1999年   34篇
  1998年   17篇
  1997年   14篇
  1996年   12篇
  1995年   17篇
  1994年   11篇
  1993年   15篇
  1992年   26篇
  1991年   20篇
  1990年   17篇
  1989年   20篇
  1988年   23篇
  1987年   15篇
  1986年   14篇
  1985年   17篇
  1984年   11篇
  1983年   10篇
  1982年   11篇
  1981年   10篇
  1980年   10篇
  1979年   8篇
  1978年   8篇
  1977年   8篇
  1976年   6篇
  1974年   9篇
  1967年   5篇
排序方式: 共有2191条查询结果,搜索用时 15 毫秒
21.
22.
α-mannosidase from Erythrina indica seeds is a Zn2+ dependent glycoprotein with 8.6% carbohydrate. The enzyme has a temperature optimum of 50 °C and energy of activation calculated from Arrhenius plot was found to be 23 kJ mol− 1. N-terminal sequence up to five amino acid residues was found to be DTQEN (Asp, Thr, Gln, Glu, and Asn). In chemical modification studies treatment of the enzyme with NBS led to total loss of enzyme activity and modification of a single tryptophan residue led to inactivation. Fluorescence studies over a pH range of 3–8 have shown tryptophan residue to be in highly hydrophobic environment and pH change did not bring about any appreciable change in its environment. Far-UV CD spectrum indicated predominance of α-helical structure in the enzyme. α-Mannosidase from E indica exhibits immunological identity with α-mannosidase from Canavalia ensiformis but not with the same enzyme from Glycine max and Cicer arietinum. Incubation of E. indica seed lectin with α-mannosidase resulted in 35% increase in its activity, while no such activation was observed for acid phosphatase from E. indica. Lectin induced activation of α-mannosidase could be completely abolished in presence of lactose, a sugar specific for lectin.  相似文献   
23.
Xenorhabdus nematophila secretes insecticidal proteins to kill its larval prey. We have isolated an approximately 58-kDa GroEL homolog, secreted in the culture medium through outer membrane vesicles. The protein was orally insecticidal to the major crop pest Helicoverpa armigera with an LC50 of approximately 3.6 microg/g diet. For optimal insecticidal activity all three domains of the protein, apical, intermediate, and equatorial, were necessary. The apical domain alone was able to bind to the larval gut membranes and manifest low level insecticidal activity. At equimolar concentrations, the apical domain contained approximately one-third and the apical-intermediate domain approximately one-half bioactivity of that of the full-length protein. Interaction of the protein with the larval gut membrane was specifically inhibited by N-acetylglucosamine and chito-oligosaccharides. Treatment of the larval gut membranes with chitinase abolished protein binding. Based on the three-dimensional structural model, mutational analysis demonstrated that surface-exposed residues Thr-347 and Ser-356 in the apical domain were crucial for both binding to the gut epithelium and insecticidal activity. Double mutant T347A,S356A was 80% less toxic (p < 0.001) than the wild type protein. The GroEL homolog showed alpha-chitin binding activity with Kd approximately 0.64 microm and Bmax approximately 4.68 micromol/g chitin. The variation in chitin binding activity of the mutant proteins was in good agreement with membrane binding characteristics and insecticidal activity. The less toxic double mutant XnGroEL showed an approximately 8-fold increase of Kd in chitin binding assay. Our results demonstrate that X. nematophila secretes an insecticidal GroEL protein with chitin binding activity.  相似文献   
24.
25.
This study tested the hypothesis that shear stress interacts with the insulin-like growth factor-I (IGF-I) pathway to stimulate osteoblast proliferation. Human TE85 osteosarcoma cells were subjected to a steady shear stress of 20 dynes/cm(2) for 30 min followed by 24-h incubation with IGF-I (0-50 ng/ml). IGF-I increased proliferation dose-dependently (1.5-2.5-fold). Shear stress alone increased proliferation by 70%. The combination of shear stress and IGF-I stimulated proliferation (3.5- to 5.5-fold) much greater than the additive effects of each treatment alone, indicating a synergistic interaction. IGF-I dose-dependently increased the phosphorylation level of Erk1/2 by 1.2-5.3-fold and that of IGF-I receptor (IGF-IR) by 2-4-fold. Shear stress alone increased Erk1/2 and IGF-IR phosphorylation by 2-fold each. The combination treatment also resulted in synergistic enhancements in both Erk1/2 and IGF-IR phosphorylation (up to 12- and 8-fold, respectively). Shear stress altered IGF-IR binding only slightly, suggesting that the synergy occurred primarily at the post-ligand binding level. Recent studies have implicated a role for integrin in the regulation of IGF-IR phosphorylation and IGF-I signaling. To test whether the synergy involves integrin-dependent mechanisms, the effect of echistatin (a disintegrin) on proliferation in response to shear stress +/- IGF-I was measured. Echistatin reduced basal proliferation by approximately 60% and the shear stress-induced mitogenic response by approximately 20%. It completely abolished the mitogenic effect of IGF-I and that of the combination treatment. Shear stress also significantly reduced the amounts of co-immunoprecipitated SHP-2 and -1 with IGF-IR, suggesting that the synergy between shear stress and IGF-I in osteoblast proliferation involves integrin-dependent recruitment of SHP-2 and -1 away from IGF-IR.  相似文献   
26.
The effect of CardiPro, a polyherbal formulation, with an antioxidant property, has been studied on doxorubicin (DXR)-induced cardiotoxicity in mice. CardiPro (150 mg/kg b.w., twice daily was administered orally for 7 weeks along with four equal injections (each containing 4.0 mg/kg b.w., DXR) intraperitoneally, once weekly (cumulative dose 16 mg/kg). After a 3-week post DXR treatment period, cardiotoxicity was assessed by noting mortality, volume of ascites, liver congestion, changes in heart weight, myocardial lipid peroxidation, antioxidant enzymes and histology of heart. DXR-treated animals showed higher mortality (50%) and more ascites. Myocardial SOD and glutathione peroxidase activity were decreased and lipid peroxidation was increased. Histology of heart of DXR-treated animals showed loss of myofibrils and focal cytoplasmic vacuolization. CardiPro significantly protected the mice from DXR-induced cardiotoxic effects as evidenced by lower mortality (25%), less ascites, myocardial lipid peroxidation, normalization of antioxidant enzymes and minimal damage to the heart histologically. Our data confirm the earlier reports that DXR cardiotoxicity is associated with the free radical-induced tissue damage. Administration of CardiPro, with an antioxidant property, protected the DXR-induced cardiotoxicity in mice.  相似文献   
27.
28.
Phytochemical investigation of the CHCl3 fraction of Swertia corymbosa resulted in the isolation of a new 3‐allyl‐2,8‐dihydroxy‐1,6‐dimethoxy‐9H‐xanthen‐9‐one ( 1 ), along with four known xanthones, gentiacaulein ( 3 ), norswertianin ( 4 ), 1,3,6,8‐tetrahydroxyxanthone ( 5 ), and 1,3‐dihydroxyxanthone ( 6 ). Structure of compound 1 was elucidated with the aid of IR, UV, NMR, and MS data, and chemical transformation via new allyloxy xanthone derivative ( 2 ). Compounds 1 – 6 exhibited various levels of antioxidant and anti‐α‐glucosidase activities. Absorption and fluorescence spectroscopic studies on 1 – 6 indicated that these compounds could interact with calf thymus DNA (CT‐DNA) through intercalation and with bovine serum albumin (BSA) in a static quenching process. Compound 1 was found to be significantly cytotoxic against human cancer cell lines HeLa, HCT116, and AGS, and weakly active against normal NIH 3T3 cell line.  相似文献   
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号