首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   467篇
  免费   21篇
  2023年   2篇
  2022年   6篇
  2021年   12篇
  2020年   10篇
  2019年   14篇
  2018年   18篇
  2017年   15篇
  2016年   17篇
  2015年   16篇
  2014年   18篇
  2013年   22篇
  2012年   43篇
  2011年   32篇
  2010年   30篇
  2009年   13篇
  2008年   25篇
  2007年   29篇
  2006年   17篇
  2005年   13篇
  2004年   15篇
  2003年   12篇
  2002年   15篇
  2001年   8篇
  2000年   8篇
  1999年   10篇
  1998年   5篇
  1997年   4篇
  1996年   3篇
  1994年   2篇
  1993年   2篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1988年   3篇
  1986年   4篇
  1985年   9篇
  1984年   4篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1977年   2篇
  1973年   2篇
  1972年   1篇
  1971年   1篇
  1970年   6篇
  1968年   3篇
  1966年   1篇
  1964年   1篇
  1961年   1篇
  1939年   1篇
排序方式: 共有488条查询结果,搜索用时 15 毫秒
71.
72.
73.
The energy expenditure of the tūī (Prosthemadera novaeseelandiae), a meliphagid endemic to New Zealand, was measured and compared with 20 species of honeyeaters (family Meliphagidae) to determine whether its expenditure is influenced either by life in a moist, temperate climate or an island residence. Body mass in the honeyeaters accounted for 91.5% of the variation in basal rate. The combination of body mass, climate and the maximal limit to an altitudinal distribution explained 98.6% of the variation in basal rate with tropical, low-altitude species having the highest mass-independent rate. The basal rates of meliphagids in tropical highlands are similar to those in temperate lowlands, which may reflect similar food supplies. The tūī mass-independent expenditure appears to reflect an active lifestyle in a temperate climate with no evidence that an island residence influenced its rate, whereas sedentary birds on New Zealand have responded to island life with a depressed basal rate. An effective analysis of the variation in energy expenditure requires the inclusion of the ecological and behavioural characteristics that distinguish species.  相似文献   
74.
75.
Melanocarpus albomyces, a thermophilic fungus isolated from compost by enrichment culture in a liquid medium containing sugarcane bagasse, produced cellulase-free xylanase in culture medium. The fungus was unusual in that xylanase activity was inducible not only by hemicellulosic material but also by the monomeric pentosan unit of xylan but not by glucose. Concentration of bagasse-grown culture filtrate protein followed by size-exclusion and anion-exchange chromatography separated four xylanase activities. Under identical conditions of protein purification, xylanase I was absent in the xylose-grown culture filtrate. Two xylanase activities, a minor xylanase IA and a major xylanase IIIA, were purified to apparent homogeneity from bagasse-grown cultures. Both xylanases were specific forβ-1,4 xylose-rich polymer, optimally active, respectively, at pH 6.6 and 5.6, and at 65°C. The xylanases were stable between pH 5 to 10 at 50°C for 24 h. Xylanases released xylobiose, xylotriose and higher oligomers from xylans from different sources. Xylanase IA had a Mr of 38 kDa and contained 7% carbohydrate whereas xylanase IIIA had a Mr of 24 kDa and no detectable carbohydrate. The Km for larchwood xylan (mg ml−1) and Vmax (μmol xylose min−1 mg−1 protein) of xylanase IA were 0.33 and 311, and of xylanase IIIA 1.69 and 500, respectively. Xylanases IA, II and IIIA showed no synergism in the hydrolysis of larchwood glucuronoxylan or oat spelt and sugarcane bagasse arabinoxylans. They had different reactivity on untreated and delignified bagasse. The xylanases were more reactive than cellulase on delignified bagasse. Simultaneous treatment of delignified bagasse by xylanase and cellulase released more sugar than individual enzyme treatments. By contrast, the primary cell walls of a plant, particularly from the region of elongation, were more susceptible to the action of cellulase than xylanase. The effects of xylanase and cellulase on plant cell walls were consistent with the view that hemicellulose surrounds cellulose in plant cell walls.  相似文献   
76.
Type 2 diabetes is one of the biggest health challenges in the world and WHO projects it to be the 7th leading cause of death in 2030. It is a chronic condition affecting the way our body metabolizes sugar. Insulin resistance is high risk factor marked by expression of Lipoprotein Lipases and Peroxisome Proliferator-Activated Receptor that predisposes to type 2 diabetes. AMP-dependent protein kinase in AMPK signaling pathway is a central sensor of energy status. Deregulation of AMPK signaling leads to inflammation, oxidative stress, and deactivation of autophagy which are implicated in pathogenesis of insulin resistance. SIRT4 protein deactivates AMPK as well as directly inhibits insulin secretion. SIRT4 overexpression leads to dyslipidimeia, decreased fatty acid oxidation, and lipogenesis which are the characteristic features of insulin resistance promoting type 2 diabetes. This makes SIRT4 a novel therapeutic target to control type 2 diabetes. Virtual screening and molecular docking studies were performed to obtain potential ligands. To further optimize the geometry of protein–ligand complexes Quantum Polarized Ligand Docking was performed. Binding Free Energy was calculated for the top three ligand molecules. In view of exploring the stereoelectronic features of the ligand, density functional theory approach was implemented at B3LYP/6-31G* level. 30 ns MD simulation studies of the protein–ligand complexes were done. The present research work proposes ZINC12421989 as potential inhibitor of SIRT4 with docking score (?7.54 kcal/mol), docking energy (?51.34 kcal/mol), binding free energy (?70.21 kcal/mol), and comparatively low energy gap (?0.1786 eV) for HOMO and LUMO indicating reactivity of the lead molecule.  相似文献   
77.
Identification of the molecular lesion in Caenorhabditis elegans mutants isolated through forward genetic screens usually involves time-consuming genetic mapping. We used Illumina deep sequencing technology to sequence a complete, mutant C. elegans genome and thus pinpointed a single-nucleotide mutation in the genome that affects a neuronal cell fate decision. This constitutes a proof-of-principle for using whole-genome sequencing to analyze C. elegans mutants.  相似文献   
78.
The inheritance and molecular mapping of a fertility restorer gene in basmati quality restorer line PRR-78 was carried out using an F2 mapping population from the cross IR58025A X PRR-78 employing microsatellite markers. Dominant monogenic control of fertility restoration was observed in the F2, and further confirmed by test cross data. Out of 44 sequence tagged microsatellite (STMS) markers used in the bulked segregant analysis (BSA), four differentiated the fertile bulk from the sterile bulk as well as the two parental lines from each other. One of these markers, RM258 located on chromosome 10, was found linked to the restorer gene at a distance of9.5 cM. Considering the RM258 location, additional STMS (RM171 and RM294A) and sequence tagged site (STS) primers derived from restriction fragment length polymorphic (RFLP) clones (G2155 and C1361) linked to fertility restorer gene(s) in other populations, were also used to find out a marker more tightly linked to the restorer gene. However, of these, RM171, RM294A and G2155 based primers amplified monomorphic fragments between parental lines and no amplification was observed with C1361. Cleaved amplified polymorphic sequence (CAPS) analysis of non-polymorphic STMS and STS markers and random amplified polymorphic DNA (RAPD) analysis using five random primers reportedly linked to restorer gene in other populations, also failed to differentiate the two parents. While, the marker RM258 is being used in the restorer breeding to identify putative restorer lines, search for additional tightly linked markers is underway.  相似文献   
79.
The HA2 glycopolypeptide (gp) is highly conserved in all influenza A virus strains, and it is known to play a major role in the fusion of the virus with the endosomal membrane in host cells during the course of viral infection. Vaccines and therapeutics targeting this HA2 gp could induce efficient broad-spectrum immunity against influenza A virus infections. So far, there have been no studies on the possible therapeutic effects of monoclonal antibodies (MAbs), specifically against the fusion peptide of hemagglutinin (HA), upon lethal infections with highly pathogenic avian influenza (HPAI) H5N1 virus. We have identified MAb 1C9, which binds to GLFGAIAGF, a part of the fusion peptide of the HA2 gp. We evaluated the efficacy of MAb 1C9 as a therapy for influenza A virus infections. This MAb, which inhibited cell fusion in vitro when administered passively, protected 100% of mice from challenge with five 50% mouse lethal doses of HPAI H5N1 influenza A viruses from two different clades. Furthermore, it caused earlier clearance of the virus from the lung. The influenza virus load was assessed in lung samples from mice challenged after pretreatment with MAb 1C9 (24 h prior to challenge) and from mice receiving early treatment (24 h after challenge). The study shows that MAb 1C9, which is specific to the antigenically conserved fusion peptide of HA2, can contribute to the cross-clade protection of mice infected with H5N1 virus and mediate more effective recovery from infection.Highly pathogenic avian influenza (HPAI) virus H5N1 strains are currently causing major morbidity and mortality in poultry populations across Asia, Europe, and Africa and have caused 385 confirmed human infections, with a fatality rate of 63.11% (37, 39). Preventive and therapeutic measures against circulating H5N1 strains have received a lot of interest and effort globally to prevent another pandemic outbreak. Influenza A virus poses a challenge because it rapidly alters its appearance to the immune system by antigenic drift (mutating) and antigenic shift (exchanging its components) (5). The current strategies to combat influenza include vaccination and antiviral drug treatment, with vaccination being the preferred option. The annual influenza vaccine aims to stimulate the generation of anti-hemagglutinin (anti-HA) neutralizing antibodies, which confer protection against homologous strains. Current vaccines have met with various degrees of success (31). The facts that these strategies target the highly variable HA determinant and that predicting the major HA types that pose the next epidemic threat is difficult are significant limitations to the current antiviral strategy. In the absence of an effective vaccine, therapy is the mainstay of control of influenza virus infection.Therefore, therapeutic measures against influenza will play a major role in case a pandemic arises due to H5N1 strains. Currently licensed antiviral drugs include the M2 ion-channel inhibitors (rimantidine and amantidine) and the neuraminidase inhibitors (oseltamivir and zanamivir). The H5N1 viruses are known to be resistant to the M2 ion-channel inhibitors (2, 3). Newer strains of H5N1 viruses are being isolated which are also resistant to the neuraminidase inhibitors (oseltamivir and zanamivir) (5, 17). The neuraminidase inhibitors also require high doses and prolonged treatment (5, 40), increasing the likelihood of unwanted side effects. Hence, alternative strategies for treatment of influenza are warranted.Recently, passive immunotherapy using monoclonal antibodies (MAbs) has been viewed as a viable option for treatment (26). The HA gene is the most variable gene of the influenza virus and also the most promising target for generating antibodies. It is synthesized as a precursor polypeptide, HA0, which is posttranslationally cleaved to two polypeptides, HA1 and HA2, linked by a disulfide bond. MAbs against the HA1 glycopolypeptide (gp) are known to neutralize the infectivity of the virus and hence provide good protection against infection (12). However, they are less efficient against heterologous or mutant strains, which are continuously arising due to antigenic shift and, to an extent, drift. Recent strategies for alternative therapy explore the more conserved epitopes of the influenza virus antigens (18, 33), which not only have the potential to stimulate a protective immune response but are also conserved among different subtypes, so as to offer protection against a broader range of viruses.The HA2 polypeptide represents a highly conserved region of HA across influenza A virus strains. The HA2 gp is responsible for the fusion of the virus and the host endosomal membrane during the entry of the virus into the cell (16). Previously, anti-HA MAbs that lacked HA inhibition activity were studied and were found to reduce the infectivity of non-H5 influenza virus subtypes by inhibition of fusion during viral replication (14). They are known to block fusion of the virus to the cell membrane at the postbinding and prefusion stage, thereby inhibiting viral replication. Furthermore, in vivo studies show that anti-HA2 MAbs that exhibit fusion inhibition activity contribute to protection and recovery from H3N2 influenza A virus infection (8). It is interesting that although the HA2 gp is generally conserved, the fusion peptide represents the most conserved region of the HA protein. So far, there have been no studies on the possible therapeutic effects of MAbs, specifically against the fusion peptide of HA, on lethal HPAI H5N1 infections.Previous studies have suggested that HA2 could contain a potential epitope responsible for the induction of antibody-mediated protective immunity (9). In the present study, a panel of MAbs against HA2 gp was characterized for their respective epitopes by epitope mapping. The therapeutic and prophylactic efficacies of these MAbs were evaluated in mice challenged with HPAI H5N1 virus infection.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号