首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   559篇
  免费   24篇
  2023年   2篇
  2022年   6篇
  2021年   18篇
  2020年   13篇
  2019年   11篇
  2018年   11篇
  2017年   16篇
  2016年   19篇
  2015年   21篇
  2014年   43篇
  2013年   37篇
  2012年   49篇
  2011年   36篇
  2010年   25篇
  2009年   24篇
  2008年   39篇
  2007年   27篇
  2006年   28篇
  2005年   14篇
  2004年   16篇
  2003年   13篇
  2002年   6篇
  2001年   5篇
  2000年   2篇
  1999年   5篇
  1997年   2篇
  1996年   4篇
  1995年   3篇
  1992年   10篇
  1991年   3篇
  1990年   5篇
  1989年   7篇
  1988年   6篇
  1987年   3篇
  1986年   3篇
  1985年   7篇
  1984年   7篇
  1982年   10篇
  1981年   5篇
  1980年   3篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1973年   4篇
  1972年   2篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
排序方式: 共有583条查询结果,搜索用时 15 毫秒
31.
Sensory systems have mechanisms to respond to the external environment and adapt to them. Such adaptive responses are effective for a wide dynamic range of sensing and perception of temporal change in stimulus. However, noise generated by the adaptation system itself as well as extrinsic noise in sensory inputs may impose a limit on the ability of adaptation systems. The relation between response and noise is well understood for equilibrium systems in the form of fluctuation response relation. However, the relation for nonequilibrium systems, including adaptive systems, are poorly understood. Here, we systematically explore such a relation between response and fluctuation in adaptation systems. We study the two network motifs, incoherent feedforward loops (iFFL) and negative feedback loops (nFBL), that can achieve perfect adaptation. We find that the response magnitude in adaption systems is limited by its intrinsic noise, implying that higher response would have higher noise component as well. Comparing the relation of response and noise in iFFL and nFBL, we show that whereas iFFL exhibits adaptation over a wider parameter range, nFBL offers higher response to noise ratio than iFFL. We also identify the condition that yields the upper limit of response for both network motifs. These results may explain the reason of why nFBL seems to be more abundant in nature for the implementation of adaption systems.  相似文献   
32.

Background

α-Santalol, an active component of sandalwood oil, has shown chemopreventive effects on skin cancer in different murine models. However, effects of α-santalol on cell cycle have not been studied. Thus, the objective of this study was to investigate effects of α-santalol on cell cycle progression in both p53 mutated human epidermoid carcinoma A431 cells and p53 wild-type human melanoma UACC-62 cells to elucidate the mechanism(s) of action.

Methods

MTT assay was used to determine cell viability in A431 cells and UACC-62; fluorescence-activated cell sorting (FACS) analysis of propidium iodide staining was used for determining cell cycle distribution in A431 cells and UACC-62 cells; immunoblotting was used for determining the expression of various proteins and protein complexes involved in the cell cycle progression; siRNA were used to knockdown of p21 or p53 in A431 and UACC-62 cells and immunofluorescence microscopy was used to investigate microtubules in UACC-62 cells.

Results

α-Santalol at 50-100 μM decreased cell viability from 24 h treatment and α-santalol at 50 μM-75 μM induced G2/M phase cell cycle arrest from 6 h treatment in both A431 and UACC-62 cells. α-Santalol altered expressions of cell cycle proteins such as cyclin A, cyclin B1, Cdc2, Cdc25c, p-Cdc25c and Cdk2. All of these proteins are critical for G2/M transition. α-Santalol treatment up-regulated the expression of p21 and suppressed expressions of mutated p53 in A431 cells; whereas, α-santalol treatment increased expressions of wild-type p53 in UACC-62 cells. Knockdown of p21 in A431 cells, knockdown of p21 and p53 in UACC-62 cells did not affect cell cycle arrest caused by α-santalol. Furthermore, α-santalol caused depolymerization of microtubules similar to vinblastine in UACC-62 cells.

Conclusions

This study for the first time identifies effects of α-santalol in G2/M phase arrest and describes detailed mechanisms of G2/M phase arrest by this agent, which might be contributing to its overall cancer preventive efficacy in various mouse skin cancer models.
  相似文献   
33.
The exposure of paddy fields to arsenic (As) through groundwater irrigation is a serious concern that may not only lead to As accumulation to unacceptable levels but also interfere with mineral nutrients in rice grains. In the present field study, profiling of the mineral nutrients (iron (Fe), phosphorous, zinc, and selenium (Se)) was done in various rice genotypes with respect to As accumulation. A significant genotypic variation was observed in elemental retention on root Fe plaque and their accumulation in various plant parts including grains, specific As uptake (29–167 mg kg?1 dw), as well as As transfer factor (4–45%). Grains retained the least level of As (0.7–3%) with inorganic As species being the dominant forms, while organic As species, viz., dimethylarsinic acid and monomethylarsonic acid, were non-detectable. In all tested varieties, the level of Se was low (0.05–0.12 mg kg?1 dw), whereas that of As was high (0.4–1.68 mg kg?1 dw), considering their safe/recommended daily intake limits, which may not warrant their human consumption. Hence, their utilization may increase the risk of arsenicosis, when grown in As-contaminated areas.  相似文献   
34.
Aims: Isolation, characterization and assessment of butachlor‐degrading potential of bacterial strain JS‐1 in soil. Methods and Results: Butachlor‐degrading bacteria were isolated using enrichment culture technique. The morphological, biochemical and genetic characteristics based on 16S rDNA sequence homology and phylogenetic analysis confirmed the isolate as Stenotrophomonas acidaminiphila strain JS‐1. The strain JS‐1 exhibited substantial growth in M9 mineral salt medium supplemented with 3·2 mmol l?1 butachlor, as a sole source of carbon and energy. The HPLC analysis revealed almost complete disappearance of butachlor within 20 days in soil at a rate constant of 0·17 day?1 and half‐life (t½) of 4·0 days, following the first‐order rate kinetics. The strain JS‐1 in stationary phase of culture also produced 21·0 μg ml?1 of growth hormone indole acetic acid (IAA) in the presence of 500 μg ml?1 of tryptophan. The IAA production was stimulated at lower concentrations of butachlor, whereas higher concentrations above 0·8 mmol l?1 were found inhibitory. Conclusions: The isolate JS‐1 characterized as Stenotrophomonas acidaminiphila was capable of utilizing butachlor as sole source of carbon and energy. Besides being an efficient butachlor degrader, it substantially produces IAA. Significance and Impact of the Study: The bacterial strain JS‐1 has a potential for butachlor remediation with a distinctive auxiliary attribute of plant growth stimulation.  相似文献   
35.
Ras proteins regulate a wide range of biological processes by interacting with a variety of effector proteins. In addition to the known role in tumorigensis, the activated form of Ras exhibits growth-inhibitory effects by unknown mechanisms. Several Ras effector proteins identified as mediators of apoptosis and cell-cycle arrest also exhibit properties normally associated with tumor suppressor proteins. Here, we show that Ras effector RASSF5/NORE-1 binds strongly to K-Ras but weakly to both N-Ras and H-Ras. RASSF5 was found to localize both in the nucleus and the nucleolus in contrast to other Ras effector proteins, RASSF1C and RASSF2, which are localized in the nucleus and excluded from nucleolus. A 50 amino acid residue transferable arginine-rich nucleolar localization signal (NoLS) identified in RASSF5 is capable of interacting with importin-beta and transporting the cargo into the nucleolus. Surprisingly, similar arginine-rich signals identified in RASSF1C and RASSF2 interact with importin-alpha and transport the heterologous cytoplasmic proteins to the nucleus. Interestingly, mutation of arginine residues within these nuclear targeting signals prevented interaction of Ras effector proteins with respective transport receptors and abolished their nuclear translocation. These results provide evidence for the first time that arginine-rich signals are able to recognize different nuclear import receptors and transport the RASSF proteins into distinct sub-cellular compartments. In addition, our data suggest that the nuclear localization of RASSF5 is critical for its cell growth control activity. Together, these data suggest that the transport of Ras effector superfamily proteins into the nucleus/nucleolus may play a vital role in modulating Ras-mediated cell proliferation during tumorigenesis.  相似文献   
36.
The biologically active form of vitamin D, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), regulates osteoblast proliferation and differentiation. Production of 1,25(OH)2D3 is catalysed by the enzyme 25-hydroxyvitamin D3-1-hydroxylase (CYP27B1). Though highly expressed in the kidney, the CYP27B1 gene is also expressed in non-renal tissues including bone. It is hypothesised that local production of 1,25(OH)2D3 by osteoblasts plays an autocrine or paracrine role. The aim of this study was to investigate what factors regulate expression of the CYP27B1 gene in osteoblast cells. ROS 17/2.8 osteoblast cells were transiently transfected with plasmid constructs containing the 5′-flanking sequence of the human CYP27B1 gene fused to a luciferase reporter gene. Cells were treated with either parathyroid hormone (PTH), 1,25(OH)2D3, transforming growth factor-beta (TGF-β) or insulin-like growth factor-1 (IGF-1) and luciferase activity was measured 24 h later. The results showed that 1,25(OH)2D3 did not alter expression of the reporter construct, however treatment with PTH, IGF-1 and TGF-β decreased expression by 18, 53 and 58% respectively. The repressive action of TGF-β was isolated to the region between −531 and −305 bp. These data suggest that expression of the 5′-flanking region for the CYP27B1 gene in osteoblast cells may be regulated differently to that previously described in kidney cells.  相似文献   
37.
Available evidence from a multitude of studies on the effects of 4-hydroxynonenal (HNE) on cellular processes seem to converge on some common themes: (i) concentration-dependent opposing effects of HNE on key signaling components (e.g. protein kinase C, adenylate cyclase) predict that certain constitutive levels of HNE may be needed for normal cell functions - lowering of this constitutive HNE level in cells promotes proliferative machinery while an increase in this level promotes apoptotic signaling; (ii) HNE is a common denominator in stress-induced apoptosis caused by H(2)O(2), superoxide, UV, heat or oxidant chemicals such as doxorubicin; and (iii) HNE can modulate ligand-independent signaling by membrane receptors such as EGFR or Fas (CD95) and may act as a sensor of external stimuli for eliciting stress-response. Against a backdrop of various reported effects of HNE, in vitro and in vivo, we have critically evaluated the above mentioned hypotheses suggesting a key role of HNE in signaling.  相似文献   
38.
39.
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号