首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   900篇
  免费   47篇
  2023年   7篇
  2022年   16篇
  2021年   27篇
  2020年   15篇
  2019年   25篇
  2018年   19篇
  2017年   14篇
  2016年   29篇
  2015年   34篇
  2014年   45篇
  2013年   68篇
  2012年   64篇
  2011年   67篇
  2010年   49篇
  2009年   49篇
  2008年   40篇
  2007年   36篇
  2006年   30篇
  2005年   32篇
  2004年   30篇
  2003年   23篇
  2002年   11篇
  2001年   21篇
  2000年   15篇
  1999年   15篇
  1998年   6篇
  1997年   8篇
  1995年   3篇
  1994年   5篇
  1993年   4篇
  1992年   8篇
  1991年   8篇
  1990年   13篇
  1989年   15篇
  1988年   5篇
  1987年   8篇
  1986年   5篇
  1985年   8篇
  1984年   8篇
  1983年   7篇
  1981年   4篇
  1979年   4篇
  1977年   6篇
  1976年   3篇
  1975年   4篇
  1974年   5篇
  1973年   4篇
  1972年   4篇
  1971年   4篇
  1970年   4篇
排序方式: 共有947条查询结果,搜索用时 15 毫秒
91.
Pradhan A  Tuteja R 《The FEBS journal》2006,273(15):3545-3556
Helicases are ubiquitous enzymes that play important roles in all types of DNA transaction in the cells. Recently we have reported the characterization of the first DEAD-box helicase [Plasmodium falciparum DNA helicase 60 (PfDH60)] from Plasmodium falciparum and have shown that it is a unique, dual bipolar helicase expressed in a stage-specific manner. In this study, we show the further characterization of PfDH60. For analyzing the significance of this enzyme in parasite growth, we studied the effect of dsRNA and specific antibodies on growth of the parasite. The studies indicate that the parasite cultures treated with PfDH60 dsRNA exhibited approximately 50% growth inhibition when compared with either untreated cultures or cultures treated with unrelated dsRNA. It was interesting to note that purified immunoglobulins against PfDH60 induced approximately 62% inhibition of in vitro growth of P. falciparum and that this inhibitory effect was associated with morphologic damage to the parasite. DNA-interacting compounds inhibit DNA helicase and ssDNA-dependent ATPase activities of PfDH60. Of various compounds tested, only actinomycin, daunorubicin, ethidium bromide, netropsin and nogalamycin were able to inhibit the enzyme activities of PfDH60, with apparent IC50 values for helicase inhibition of 0.8, 0.3, 2.0, 1.2 and 1.5 microm, respectively. It may be proposed that these compounds form a complex with DNA and specifically inhibit helicases due to obstruction in the translocation of the enzyme. These compounds also inhibited parasite growth in culture. This is the first study to show inhibition of growth of the parasite by the dsRNA of a helicase, and most probably this is due to interference with cognate mRNA expression.  相似文献   
92.
S-box (SAM-I) riboswitches are a widespread class of riboswitches involved in the regulation of sulfur metabolism in Gram-positive bacteria. We report here the 3.0-Å crystal structure of the aptamer domain of the Bacillus subtilis yitJ S-box (SAM-I) riboswitch bound to S-adenosyl-l-methionine (SAM). The RNA folds into two sets of helical stacks spatially arranged by tertiary interactions including a K-turn and a pseudoknot at a four-way junction. The tertiary structure is further stabilized by metal coordination, extensive ribose zipper interactions, and SAM-mediated tertiary interactions. Despite structural differences in the peripheral regions, the SAM-binding core of the B. subtilis yitJ riboswitch is virtually superimposable with the previously determined Thermoanaerobacter tengcongensis yitJ riboswitch structure, suggesting that a highly conserved ligand-recognition mechanism is utilized by all S-box riboswitches. SHAPE (selective 2′-hydroxyl acylation analyzed by primer extension) chemical probing analysis further revealed that the alternative base-pairing element in the expression platform controls the conformational switching process. In the absence of SAM, the apo yitJ aptamer domain folds predominantly into a pre-binding conformation that resembles, but is not identical with, the SAM-bound state. We propose that SAM enters the ligand-binding site through the “J1/2-J3/4” gate and “locks” down the SAM-bound conformation through an induced-fit mechanism. Temperature-dependent SHAPE revealed that the tertiary interaction-stabilized SAM-binding core is extremely stable, likely due to the cooperative RNA folding behavior. Mutational studies revealed that certain modifications in the SAM-binding region result in loss of SAM binding and constitutive termination, which suggests that these mutations lock the RNA into a form that resembles the SAM-bound form in the absence of SAM.  相似文献   
93.
The whole plant aqueous extract of Coronopus didymus Linn. was fractionated on the basis of polarity and resulting fractions were evaluated for free radical scavenging ability. The most non-polar fraction (CDF1) was found to be more active than other fractions in scavenging DPPH, ABTS(-), nitric oxide and hydroxyl radicals in steady-state conditions. Stop-flow spectrometric studies showed 58.13% inhibition of 100 microM DPPH at a concentration of 150 microg/ml of CDF1 in 1000 s and 32.31% scavenging of 960 microM ABTS(-) at a concentration of 300 microg/ml of CDF1 in 100 s. The reaction of CDF1 with hydroxyl radicals produced by pulse radiolysis showed a transient spectrum with absorption peaks at 320, 390 and 400 nm, indicating the presence of flavonoids/related components. Competition kinetics with potassium thiocyanate against scavenging of hydroxyl radicals showed a reactivity of 0.1326 against thiocyanate. CDF1 also protected against Fenton reagent-induced calf thymus DNA damage at a concentration of 400 mg/ml indicating it to be the most potent fraction.  相似文献   
94.
The cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel in the ATP-binding cassette (ABC) transporter family. CFTR consists of two transmembrane domains, two nucleotide-binding domains (NBD1 and NBD2), and a regulatory domain. Previous biochemical reports suggest NBD1 is a site of stable nucleotide interaction with low ATPase activity, whereas NBD2 is the site of active ATP hydrolysis. It has also been reported that NBD2 additionally possessed adenylate kinase (AK) activity. Knowledge about the intrinsic biochemical activities of the NBDs is essential to understanding the Cl(-) ion gating mechanism. We find that purified mouse NBD1, human NBD1, and human NBD2 function as adenylate kinases but not as ATPases. AK activity is strictly dependent on the addition of the adenosine monophosphate (AMP) substrate. No liberation of [(33)P]phosphate is observed from the gamma-(33)P-labeled ATP substrate in the presence or absence of AMP. AK activity is intrinsic to both human NBDs, as the Walker A box lysine mutations abolish this activity. At low protein concentration, the NBDs display an initial slower nonlinear phase in AK activity, suggesting that the activity results from homodimerization. Interestingly, the G551D gating mutation has an exaggerated nonlinear phase compared with the wild type and may indicate this mutation affects the ability of NBD1 to dimerize. hNBD1 and hNBD2 mixing experiments resulted in an 8-57-fold synergistic enhancement in AK activity suggesting heterodimer formation, which supports a common theme in ABC transporter models. A CFTR gating mechanism model based on adenylate kinase activity is proposed.  相似文献   
95.
Microcytic hypochromic anemia is a common condition in clinical practice and alpha-thalassemia has to be considered as a differential diagnosis. Molecular diagnosis of alpha-thalassemia is possible by polymerase chain reaction. The aim of this study was to evaluate the frequency of alpha-gene numbers in subjects with microcytosis. In total, 276 subjects with microcytic hypochromic anemia [MCV<80fl; MCH<27pg] were studied. These include 125 with thalassemia trait, 48 with thalassemia major, 26 with sickle-cell thalassemia, 15 with E beta-thalassemia, 40 with iron-deficiency anemia, 8 with another hemolytic anemia, and 14 patients with no definite diagnosis. Genotyping for -alpha3.7 deletion, -alpha4.2 deletion, Hb Constant Spring, and a-triplications was done with polymerase chain reaction. The overall frequency of -alpha3.7 deletion in 276 individuals is 12.7%. The calculated allele frequency for a-thalassemia is 0.09. The subgroup analysis showed that co-inheritance of a-deletion is more frequent with the sickle-cell mutation than in other groups. We were able to diagnose 1/3 of unexplained cases of microcytosis as a-thalassemia carriers. The a-gene mutation is quite common in the Indian subcontinent. Molecular genotyping of a-thalassemia helps to diagnose unexplained microcytosis, and thus prevents unnecessary iron supplementation.  相似文献   
96.

Background  

Sequence changes in regulatory regions have often been invoked to explain phenotypic divergence among species, but molecular examples of this have been difficult to obtain.  相似文献   
97.
The study of neurodegenerative disorders has had a major impact on our understanding of more fundamental mechanisms underlying neurobiology. Breakthroughs in the genetics of Alzheimer's (AD) and Parkinson's diseases (PD) has resulted in new knowledge in the areas of axonal transport, energy metabolism, protein trafficking/clearance and synaptic physiology. The major neurodegenerative diseases have in common a regional or network pathology associated with abnormal protein accumulation(s) and various degrees of motor or cognitive decline. In AD, β-amyloids are deposited in extracellular diffuse and compacted plaques as well as intracellularly. There is a major contribution to the disease by the co-existence of an intraneuronal tauopathy. Additionally, PD-like Lewy Bodies (LBs) bearing aggregated α-synuclein is present in 40-60% of all AD cases, especially involving amygdala. Amyloid deposits can be degraded or cleared by several mechanisms, including immune-mediated and transcytosis across the blood-brain barrier. Another avenue for disposal involves the lysosome pathway via autophagy. Enzymatic pathways include insulin degradative enzyme and neprilysin. Finally, the co-operative actions of C-terminus Hsp70 interacting protein (CHIP) and Parkin, components of a multiprotein E3 ubiquitin ligase complex, may be a portal to proteasome-mediated degradation. Mutations in the Parkin gene are the most common genetic link to autosomal recessive Parkinson's disease. Parkin catalyzes the post-translational modification of proteins with polyubiquitin, targeting them to the 26S proteasome. Parkin reduces intracellular Aβ(1-42) peptide levels, counteracts its effects on cell death, and reverses its effect to inhibit the proteasome. Additionally, Parkin has intrinsic cytoprotective activity to promote proteasome function and defend against oxidative stress to mitochondria. Parkin and CHIP are also active in amyloid clearance and cytoprotection in vivo. Parkin has cross-functionality in additional neurodegenerative diseases, for instance, to eliminate polyglutamine-expanded proteins, reducing their aggregation and toxicity and reinstate proteasome function. The dual actions of CHIP (molecular co-chaperone and E3 ligase) and Parkin (as E3-ubiquitin ligase and anti-oxidant) may also play a role in suppressing inflammatory reactions in animal models of neurodegeneration. In this review, we focus on the significance of CHIP and Parkin as inducers of amyloid clearance, as cytoprotectants and in the suppression of reactive inflammation. A case is made for more effort to explore whether neurodegeneration associated with proteinopathies can be arrested at early stages by promoting their mutual action.  相似文献   
98.
Jin H  Ma Y  Yan Z  Prabhakar BS  He B 《Journal of virology》2012,86(2):1059-1068
The γ134.5 protein of herpes simplex viruses (HSV) is essential for virulence. Accordingly, an HSV mutant lacking γ134.5 is attenuated in vivo. Despite its vaccine potential, the mechanism by which the γ134.5 null mutant triggers protective immunity is unknown. In this report we show that vaccination with the γ134.5 null mutant protects against lethal challenge from wild-type virus via IκB kinase in dendritic cells (DCs), which sense virus-associated molecular patterns. Unlike mock-treated DCs, DCs primed with the γ134.5 null mutant ex vivo mediate resistance to wild-type HSV after adoptive transfer into naïve mice. Furthermore, the γ134.5 null mutant activates IκB kinase, which facilitates p65/RelA phosphorylation and nuclear translocation, resulting in DC maturation. While unable to produce infectious virus in DCs, this mutant virus expresses early and late genes. In its abortive infection, the γ134.5 null mutant induces protective immunity more effectively in CD8+ DCs than in CD8 DCs. This is mirrored by a higher level of interleukin-6 (IL-6) and IL-12 secretion by CD8+ DCs than CD8 DCs. Remarkably, inhibition of p65/RelA phosphorylation or nuclear translocation in CD8+ DCs disrupts protective immunity. These results suggest that engagement of the γ134.5 null mutant with CD8+ DCs elicits innate immunity to activate NF-κB, which translates into protective immunity.  相似文献   
99.
100.
Testis differentiation in zebrafish involves juvenile ovary to testis transformation initiated by an apoptotic wave. The molecular regulation of this transformation process is not fully understood. NF-κB is activated at an early stage of development and has been shown to interact with steroidogenic factor-1 in mammals, leading to the suppression of anti-Müllerian hormone (Amh) gene expression. Because steroidogenic factor-1 and Amh are important for proper testis development, NF-κB-mediated induction of anti-apoptotic genes could, therefore, also play a role in zebrafish gonad differentiation. The aim of this study was to examine the potential role of NF-κB in zebrafish gonad differentiation. Exposure of juvenile zebrafish to heat-killed Escherichia coli activated the NF-κB pathways and resulted in an increased ratio of females from 30 to 85%. Microarray and quantitative real-time-PCR analysis of gonads showed elevated expression of NF-κB-regulated genes. To confirm the involvement of NF-κB-induced anti-apoptotic effects, zebrafish were treated with sodium deoxycholate, a known inducer of NF-κB or NF-κB activation inhibitor (NAI). Sodium deoxycholate treatment mimicked the effect of heat-killed bacteria and resulted in an increased proportion of females from 25 to 45%, whereas the inhibition of NF-κB using NAI resulted in a decrease in females from 45 to 20%. This study provides proof for an essential role of NF-κB in gonadal differentiation of zebrafish and represents an important step toward the complete understanding of the complicated process of sex differentiation in this species and possibly other cyprinid teleosts as well.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号