首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   0篇
  2023年   1篇
  2022年   2篇
  2021年   6篇
  2020年   1篇
  2019年   12篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2013年   4篇
  2012年   1篇
  2011年   1篇
  2010年   3篇
  2009年   3篇
  2006年   1篇
  2004年   2篇
排序方式: 共有42条查询结果,搜索用时 234 毫秒
31.
Cluster Computing - The smart grid provides efficient transmission of energy and data. However, the frequent gathering of users’ consumption data discloses users’ privacy. Plenty of...  相似文献   
32.
Tissue engineering has yet to reach its ideal goal, i.e. creating profitable off-the-shelf tissues and organs, designing scaffolds and three-dimensional tissue architectures that can maintain the blood supply, proper biomaterial selection, and identifying the most efficient cell source for use in cell therapy and tissue engineering. These are still the major challenges in this field. Regarding the identification of the most appropriate cell source, aging as a factor that affects both somatic and stem cells and limits their function and applications is a preventable and, at least to some extents, a reversible phenomenon. Here, we reviewed different stem cell types, namely embryonic stem cells, adult stem cells, induced pluripotent stem cells, and genetically modified stem cells, as well as their sources, i.e. autologous, allogeneic, and xenogeneic sources. Afterward, we approached aging by discussing the functional decline of aged stem cells and different intrinsic and extrinsic factors that are involved in stem cell aging including replicative senescence and Hayflick limit, autophagy, epigenetic changes, miRNAs, mTOR and AMPK pathways, and the role of mitochondria in stem cell senescence. Finally, various interventions for rejuvenation and geroprotection of stem cells are discussed. These interventions can be applied in cell therapy and tissue engineering methods to conquer aging as a limiting factor, both in original cell source and in the in vitro proliferated cells.  相似文献   
33.
Drug resistance is a major barrier against successful treatments of cancer patients. Various intrinsic mechanisms and adaptive responses of tumor cells to cancer drugs often lead to failure of treatments and tumor relapse. Understanding mechanisms of cancer drug resistance is critical to develop effective treatments with sustained anti-tumor effects. Three-dimensional cultures of cancer cells known as spheroids present a biologically relevant model of avascular tumors and have been increasingly incorporated in tumor biology and cancer drug discovery studies. In this review, we discuss several recent studies from our group that utilized colorectal tumor spheroids to investigate responses of cancer cells to cytotoxic and molecularly targeted drugs and uncover mechanisms of drug resistance. We highlight our findings from both short-term, one-time treatments and long-term, cyclic treatments of tumor spheroids and discuss mechanisms of adaptation of cancer cells to the treatments. Guided by mechanisms of resistance, we demonstrate the feasibility of designing specific drug combinations to effectively block growth and resistance of cancer cells in spheroid cultures. Finally, we conclude with our perspectives on the utility of three-dimensional tumor models and their shortcomings and advantages for phenotypic and mechanistic studies of cancer drug resistance.  相似文献   
34.
Nanorods of two-dimensional organometallic coordination polymer, [Ag(μ4-DPOAc)]n (1) [DPOAc = diphenylacetate], has been synthesized by the reaction of potassium diphenylacetate (DPOAcK) and AgNO3 by sonochemical process. Reaction conditions, such as the concentration of the initial reagents played important roles in the size and growth process of the final product. Silver nanoparticles were synthesized from nanorods of compound 1. These nano-coordination polymer and nanoparticles were characterized by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). Thermal stability of nano and crystal samples of compound 1 were studied and compared with each other.  相似文献   
35.
Planning forest management relies on predicting insect outbreaks such as mountain pine beetle, particularly in the intermediate‐term future, e.g., 5‐year. Machine‐learning algorithms are potential solutions to this challenging problem due to their many successes across a variety of prediction tasks. However, there are many subtle challenges in applying them: identifying the best learning models and the best subset of available covariates (including time lags) and properly evaluating the models to avoid misleading performance‐measures. We systematically address these issues in predicting the chance of a mountain pine beetle outbreak in the Cypress Hills area and seek models with the best performance at predicting future 1‐, 3‐, 5‐ and 7‐year infestations. We train nine machine‐learning models, including two generalized boosted regression trees (GBM) that predict future 1‐ and 3‐year infestations with 92% and 88% AUC, and two novel mixed models that predict future 5‐ and 7‐year infestations with 86% and 84% AUC, respectively. We also consider forming the train and test datasets by splitting the original dataset randomly rather than using the appropriate year‐based approach and show that this may obtain models that score high on the test dataset but low in practice, resulting in inaccurate performance evaluations. For example, a k‐nearest neighbor model with the actual performance of 68% AUC, scores the misleadingly high 78% on a test dataset obtained from a random split, but the more accurate 66% on a year‐based split. We then investigate how the prediction accuracy varies with respect to the provided history length of the covariates and find that neural network and naive Bayes, predict more accurately as history‐length increases, particularly for future 1‐ and 3‐year predictions, and roughly the same holds with GBM. Our approach is applicable to other invasive species. The resulting predictors can be used in planning forest and pest management and planning sampling locations in field studies.  相似文献   
36.
37.
Pools of O-glycopeptides prepared from trypsin-digested reduced and alkylated human serum IgA1 have been analyzed using matrix-assisted laser desorption ionization-time of flight-mass spectrometry (MALDI-ToF-MS) in the positive-ion mode, using 2,4,6-trihydroxy acetophenone-ammonium citrate matrix. Dozens of such pools prepared from normal serum IgA1 and from serum of patients with a number of different medical conditions have been routinely analyzed in this manner. The glycopeptides present in these pools possess identical amino acid sequences but are substituted with a variety of neutral and sialylated glycans and the spectra obtained were such that individual compositional glycoforms were baseline resolved. In addition, the spectra were reproducible, exhibiting a relative peak intensity and area variation of around 11-16%, enabling the technique to be used for the relative quantitation of the different compositional glycoforms present. This could be achieved manually or by applying a Java program especially developed for this purpose. The MS analysis described here is a major improvement over present MALDI methods used for profiling the O-glycosylation of IgA1. The MS methodology together with the Java data analysis are expected to be generally applicable for profiling O-linked glycopeptides derived from other glycoproteins and probably for N-linked glycopeptide pools.  相似文献   
38.
Recent studies have reported very low capacity during sterile filtration of glycoconjugate vaccines due to rapid fouling of the sterile filter. The objective of this study was to explore the potential for significantly increasing the capacity of the sterile filter through the use of an appropriate prefilter. Data were obtained using prefilters with different pore size and chemistry, with the sterile filtration performed at constant filtrate flux using 0.22 μm nominal pore size Durapore® polyvinylidene difluoride membranes. Prefiltration through 5 μm pore size Durapore® or Nylon prefilters nearly eliminated the fouling of the sterile filter, leading to more than a 100-fold reduction in the rate of pressure increase for the sterile filter. This dramatic improvement in sterile filter performance was due to the removal of large components (greater than 1 μm in size) as confirmed by dynamic light scattering. These results demonstrate the potential of using large pore size prefilters to significantly enhance the performance of the sterile filtration process for the production of important glycoconjugate vaccines.  相似文献   
39.
40.
Over the past decade, single-use tangential flow filtration (TFF) technologies have emerged to reduce system preparation time, promote fast and flexible product change over, and ultimately shorten process development and manufacturing time/cost. In this study, the performance of a recently developed Pellicon® single-use TFF capsule was compared against traditional Pellicon® cassettes by assessing TFF process performance (such as flux, residuals clearance, and yield) and post-purification product attributes (such as concentration and mass-weighted average molecular weight). Good scaling was shown by comparing process performance and product attributes across different scales and formats. Additionally, similar TFF process performance and post-purification product attributes were observed for the single-use capsule compared to the reusable TFF cassettes. The capsule requires a smaller flush than the cassette, and it is easier to use since it does not require a compression holder or pre-sanitization. The results provide insight into the application of the single-use TFF capsule and scalability of TFF processes for the purification of conjugate vaccines.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号