首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   198篇
  免费   38篇
  236篇
  2023年   4篇
  2022年   2篇
  2021年   2篇
  2020年   5篇
  2019年   4篇
  2018年   4篇
  2017年   2篇
  2016年   6篇
  2015年   8篇
  2014年   7篇
  2013年   10篇
  2012年   12篇
  2011年   8篇
  2010年   5篇
  2009年   3篇
  2008年   7篇
  2007年   5篇
  2006年   11篇
  2005年   4篇
  2004年   10篇
  2003年   5篇
  2002年   5篇
  2001年   10篇
  2000年   7篇
  1999年   6篇
  1997年   3篇
  1996年   3篇
  1994年   3篇
  1993年   2篇
  1992年   4篇
  1991年   3篇
  1990年   9篇
  1989年   5篇
  1988年   5篇
  1987年   2篇
  1986年   7篇
  1985年   7篇
  1983年   3篇
  1982年   3篇
  1981年   3篇
  1979年   3篇
  1978年   3篇
  1976年   3篇
  1975年   2篇
  1972年   1篇
  1971年   1篇
  1970年   2篇
  1969年   1篇
  1968年   1篇
  1967年   1篇
排序方式: 共有236条查询结果,搜索用时 15 毫秒
91.
92.
Abstract: The expression of six mRNA species (α2, α3, α5, β2, β3, and γ2) encoding for GABAA receptor subunits was followed in cultured early postnatal cortical neurons by in situ hybridization histochemistry. In untreated control cultures it was found that these subunit mRNA expression profiles closely follow those seen during development in vivo. α3, α5, and β3 subunit expression declined, α2 expression increased, whereas β2 and γ2 subunit mRNA expression remained relatively constant. To test the hypothesis that GABAA receptor stimulation regulates these expression profiles, we tested the effect of a GABAA receptor positive modulator, allopregnanolone, and a GABAA receptor noncompetitive antagonist, tert -butylbicyclophosphorothionate (TBPS). It was found that allopregnanolone augmented the rate at which the α3, α5, or β3 subunit mRNA expression declined and prevented the increase in α2 subunit mRNA expression. As well, allopregnanolone down-regulated β2 subunit mRNA expression. TBPS, on the other hand, up-regulated α3, α5, β2, and β3 subunit mRNA expression. It also down-regulated the expression of α2 subunit mRNA. Both allopregnanolone and TBPS had no effect on γ2 subunit mRNA expression. These results imply that the developmental switchover of GABA receptor subunit mRNA expression is regulated by GABAA receptor activity.  相似文献   
93.
Human macrophage-like accessory cells were analyzed as they emerge in the absence of extrinsic antigens during fetal development. Monoclonal antibodies to monocytes/macrophages were used in combination with antibodies to HLA class II molecules. In the yolk sac and mesenchyme sampled at wk 4 to 6 of fertilization age, cells with dendritic morphology formed two populations distinguishable by phenotypic criteria: type i (majority) carried both macrophage-associated (RFD7+) and monocyte-associated markers (UCHM1+) but no detectable HLA-DR antigen, and type ii (minority) constitutively expressed class II (HLA-DR and -DP) but no RFD7 and UCHM1. The emergence of this heterogeneity preceded the formation of both thymus and bone marrow. During additional development, type i and type ii cells seeded to different microenvironments and underwent some additional phenotypic changes. Cells of type i, the RFD7+ population with high lysosomal (acid phosphatase) activity, were seen in the thymic cortex, marginal zone of lymph nodes, splenic red pulp, and in the midst of erythropoietic activity within the bone marrow. These cells were UCHM1- and class II-. Cells of type ii formed the population of HLA-DR+, RFD7- interdigitating cells, early inhabitants of T cell areas in the developing thymic medulla, lymph nodes, spleen, and tonsil. The Type ii cells that had already settled in their nichès expressed not only HLA-DR and -DP but also HLA-DQ, and another class II antigen identified by the antibody RFD1, which shows the restricted tissue distribution of HLA-DQ, but is governed by genes that are outside of and telomeric to the HLA-DQ region (or HLA-DR). Finally, subpopulations of macrophages (RFD7+, acid phosphatase-positive) in the fetal gastrointestinal and hepatic systems were HLA-DR+; the latter appear to include precursors of Kupffer cells in the developing liver.  相似文献   
94.
A novel peptide, levitide, less than Glu-Gly-Met-Ile-Gly-Thr-Leu-Thr-Ser-Lys-Arg-Ile-Lys-Gln-NH2 has been isolated from skin secretions of the South African frog Xenopus laevis and sequenced by fast atom bombardment mass spectrometry. Synthetic oligonucleotides were used as probes to screen a X. laevis skin cDNA library for species coding for preprolevitide. Two such clones were detected and their sequences are reported here. Preprolevitide is 88 residues long, exhibits a putative signal sequence at the amino terminus, and contains the levitide peptide at the carboxyl terminus. The levitide precursor shows a striking nucleotide and amino acid (86%) sequence homology with the precursor of xenopsin, a biologically active octapeptide from Xenopus skin, and also encodes a 25-residue amphipathic peptide that is released by processing at a single arginine residue.  相似文献   
95.
Aim Winter snow has been suggested to regulate terrestrial carbon (C) cycling by modifying microclimate, but the impacts of change in snow cover on the annual C budget at a large scale are poorly understood. Our aim is to quantify the C balance under changing snow depth. Location Non‐permafrost region of the northern forest area. Methods Here, we used site‐based eddy covariance flux data to investigate the relationship between depth of snow cover and ecosystem respiration (Reco) during winter. We then used the Biome‐BGC model to estimate the effect of reductions in winter snow cover on the C balance of northern forests in the non‐permafrost region. Results According to site observations, winter net ecosystem C exchange (NEE) ranged from 0.028 to 1.53 gC·m?2·day?1, accounting for 44 ± 123% of the annual C budget. Model simulation showed that over the past 30 years, snow‐driven change in winter C fluxes reduced non‐growing season CO2 emissions, enhancing the annual C sink of northern forests. Over the entire study area, simulated winter Reco significantly decreased by 0.33 gC·m?2·day?1·year?1 in response to decreasing depth of snow cover, which accounts for approximately 25% of the simulated annual C sink trend from 1982 to 2009. Main conclusion Soil temperature is primarily controlled by snow cover rather than by air temperature as snow serves as an insulator to prevent chilling impacts. A shallow snow cover has less insulation potential, causing colder soil temperatures and potentially lower respiration rates. Both eddy covariance analysis and model‐simulated results show that both Reco and NEE are significantly and positively correlated with variation in soil temperature controlled by variation in snow depth. Overall, our results highlight that a decrease in winter snow cover restrains global warming as less C is emitted to the atmosphere.  相似文献   
96.
A survey of all naturally occurring irregular monoterpenes which may bear structural analogies to presqualene alcohol is presented. Attention is focused on structural and stereochemical relationships among these compounds. A critical analysis of biogenetic proposals is made.  相似文献   
97.
Tree-ring records can provide valuable information to advance our understanding of contemporary terrestrial carbon cycling and to reconstruct key metrics in the decades preceding monitoring data. The growing use of tree rings in carbon-cycle research is being facilitated by increasing recognition of reciprocal benefits among research communities. Yet, basic questions persist regarding what tree rings represent at the ecosystem level, how to optimally integrate them with other data streams, and what related challenges need to be overcome. It is also apparent that considerable unexplored potential exists for tree rings to refine assessments of terrestrial carbon cycling across a range of temporal and spatial domains. Here, we summarize recent advances and highlight promising paths of investigation with respect to (1) growth phenology, (2) forest productivity trends and variability, (3) CO2 fertilization and water-use efficiency, (4) forest disturbances, and (5) comparisons between observational and computational forest productivity estimates. We encourage the integration of tree-ring data: with eddy-covariance measurements to investigate carbon allocation patterns and water-use efficiency; with remotely sensed observations to distinguish the timing of cambial growth and leaf phenology; and with forest inventories to develop continuous, annually-resolved and long-term carbon budgets. In addition, we note the potential of tree-ring records and derivatives thereof to help evaluate the performance of earth system models regarding the simulated magnitude and dynamics of forest carbon uptake, and inform these models about growth responses to (non-)climatic drivers. Such efforts are expected to improve our understanding of forest carbon cycling and place current developments into a long-term perspective.  相似文献   
98.
The seasonality of pan-tropical wet forests has been highlighted by recent remote sensing and eddy flux measurements that have recorded both increased and sustained dry-season gross primary productivity (GPP). These observations suggest that wet tropical forests are primarily light limited and that the mechanisms for resilience to drought and projected climate change must be considered in ecosystem model development. Here we investigate two proposed mechanisms for drought resilience of tropical forests, deep soil water access and the seasonality of phenology, using the LPJmL Dynamic Global Vegetation Model. We parameterize a new seasonal phenology module for tropical evergreen trees using remotely sensed leaf area index (LAI) and incoming solar radiation data from the Terra Earth Observing System. Simulations are evaluated along a gradient of dry-season length (DSL) in South America against MODIS GPP estimates. We show that deep soil water access is critical for maintaining dry-season GPP, whereas implementing a seasonal LAI did not enhance simulated dry-season GPP. The Farquhar-Collatz photosynthesis scheme used in LPJmL optimizes leaf nitrogen allocation according to light conditions, causing maximum photosynthetic capacity in the dry season. High LAI, characteristic of tropical forests, also dampens the seasonal amplitude of the fraction of photosynthetically active radiation (FPAR). Given the relatively high uncertainty in tropical phenology observations and their corresponding proximate drivers, we recommend that ecosystem model development focus on belowground processes. An improved representation of soil depths and rooting distributions is necessary for modeling the dynamics of dry-season tropical forest functioning and may have important impacts for modeling tropical forest vulnerability to climate change. Author Contributions  BP conceived of the study, analyzed data, and wrote the paper. UH designed study and contributed new methods. WC designed study and contributed to paper.  相似文献   
99.
Strains of Botrytis cinerea are polymorphic for the presence of an intein in the Prp8 gene (intein +/?). The intein encodes a homing endonuclease (HEG). During meiosis in an intein +/? heterozygote, the homing endonuclease initiates intein ‘homing’ by inducing gene conversion. In such meioses, the homing endonuclease triggers gene conversion of the intein together with its flanking sequences into the empty allele. The efficiency of gene conversion of the intein was found to be 100%. The extent of flanking sequence affected by the gene conversion varied in different meioses. A survey of the inteins and flanking sequences of a group B. cinerea isolates indicates that there are two distinct variants of the intein both of which have active HEGs. The survey also suggests that the intein has been actively homing during the evolution of the species and that the PRP8 intein may have entered the species by horizontal transfer.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号