全文获取类型
收费全文 | 198篇 |
免费 | 38篇 |
专业分类
236篇 |
出版年
2023年 | 4篇 |
2022年 | 2篇 |
2021年 | 2篇 |
2020年 | 5篇 |
2019年 | 4篇 |
2018年 | 4篇 |
2017年 | 2篇 |
2016年 | 6篇 |
2015年 | 8篇 |
2014年 | 7篇 |
2013年 | 10篇 |
2012年 | 12篇 |
2011年 | 8篇 |
2010年 | 5篇 |
2009年 | 3篇 |
2008年 | 7篇 |
2007年 | 5篇 |
2006年 | 11篇 |
2005年 | 4篇 |
2004年 | 10篇 |
2003年 | 5篇 |
2002年 | 5篇 |
2001年 | 10篇 |
2000年 | 7篇 |
1999年 | 6篇 |
1997年 | 3篇 |
1996年 | 3篇 |
1994年 | 3篇 |
1993年 | 2篇 |
1992年 | 4篇 |
1991年 | 3篇 |
1990年 | 9篇 |
1989年 | 5篇 |
1988年 | 5篇 |
1987年 | 2篇 |
1986年 | 7篇 |
1985年 | 7篇 |
1983年 | 3篇 |
1982年 | 3篇 |
1981年 | 3篇 |
1979年 | 3篇 |
1978年 | 3篇 |
1976年 | 3篇 |
1975年 | 2篇 |
1972年 | 1篇 |
1971年 | 1篇 |
1970年 | 2篇 |
1969年 | 1篇 |
1968年 | 1篇 |
1967年 | 1篇 |
排序方式: 共有236条查询结果,搜索用时 46 毫秒
21.
Analysis of the isopentenyl diphosphate isomerase gene family from Arabidopsis thaliana 总被引:1,自引:0,他引:1
Campbell Michael Hahn Frederick M. Poulter C. Dale Leustek Thomas 《Plant molecular biology》1998,36(2):323-328
Two Arabidopsis thaliana cDNAs (IPP1 and IPP2) encoding isopentenyl diphosphate isomerase (IPP isomerase) were isolated by complementation of an IPP isomerase mutant strain of Saccharomyces cerevisiae. Both cDNAs encode enzymes with an amino terminus that may function as a transit peptide for localization in plastids. At least 31 amino acids from the amino terminus of the IPP1 protein and 56 amino acids from the amino terminus of the IPP2 protein are not essential for enzymatic activity. Genomic DNA blot analysis confirmed that IPP1 and IPP2 are derived from a small gene family in A. thaliana. Based on northern analysis expression of both cDNAs occurs predominantly in roots of mature A. thaliana plants grown to the pre-flowering stage. 相似文献
22.
Farnesyl diphosphate synthetase. Molecular cloning, sequence, and expression of an essential gene from Saccharomyces cerevisiae 总被引:9,自引:0,他引:9
M S Anderson J G Yarger C L Burck C D Poulter 《The Journal of biological chemistry》1989,264(32):19176-19184
Farnesyl diphosphate (FPP) synthetase is a key enzyme in isoprenoid biosynthesis which supplies C15 precursors for several classes of essential metabolites including sterols, dolichols, and ubiquinones. The structural gene for FPP synthetase was isolated on a 4.5-kilobase EcoRI genomic restriction fragment from the yeast Saccharomyces cerevisiae. The clone encodes a 40,483-dalton polypeptide of 342 amino acids with a high degree of similarity to the protein encoded by a putative rat liver clone of FPP synthetase (Clarke, C. F., Tanaka, R. D., Svenson, K., Wamsley, M., Fogelman, A. M., and Edwards, P. A. (1987) Mol. Cell Biol. 7, 3138-3146) and to an active site protein fragment from avian liver FPP synthetase (Brems, D. N., Bruenger, E., and Rilling, H. C. (1981) Biochemistry 20, 3711-3718). When cloned into the yeast shuttle vector YRp17, the 4.5-kilobase EcoRI fragment directed a 2-3-fold over-expression of FPP synthetase activity in transformed yeast cells. The levels of expression were independent of culture growth phase and orientation of the insert, indicative of a functional promoter in the clone. Disruption of the FPP synthetase gene from a diploid yeast strain, followed by dissection and analysis of tetrads, demonstrates that the gene is an essential, single copy number gene in yeast. The gene for FPP synthetase resides on chromosome XI as judged from Southern blots of separated yeast chromosomes. 相似文献
23.
Escherichia coli 5S RNA labeled with 15N at N3 of the uridines was isolated from the S phi-187 uracil auxotroph grown on a minimal medium supplemented with [3-15N]uracil. 1H-15N multiple quantum filtered and 2D chemical shift correlated spectra gave resonances for the uridine imino 1H-15N units whose protons were exchanging slowly with solvent. Peaks with 1H/15N shifts at 11.6/154.8, 11.7/155.0, 11.8/155.5, 12.1/155.0, and 12.2/155.0 ppm were assigned to GU interactions. Two labile high-field AU resonances at 12.6/156.8 and 12.8/157.3 ppm typical of AU pairs in a shielded environment at the end of a helix were seen. Intense AU signals were also found at 13.4/158.5 and 13.6/159.2 ppm where 1H-15N units in normal Watson-Crick pairs resonate. 1H resonances at 10.6 and 13.8 ppm were too weak, presumably because of exchange with water, to give peaks in chemical shift correlated spectra. 1H chemical shifts suggest that the resonance at 13.8 ppm represents a labile AU pair, while the resonance at 10.6 ppm is typical of a tertiary interaction between U and a tightly bound water or a phosphate residue. The NMR data are consistent with proposed secondary structures for 5S RNA. 相似文献
24.
de Ruyck J Rothman SC Poulter CD Wouters J 《Biochemical and biophysical research communications》2005,338(3):1515-1518
Crystal structures of Thermus thermophilus and Bacillus subtilis type 2 IPP isomerases were combined to generate an almost complete model of the FMN-bound structure of the enzyme. In contrast to previous studies, positions of flexible loops were obtained and carefully analyzed by molecular dynamics. Docking simulations find a unique putative binding site for the IPP substrate. 相似文献
25.
Three-dimensional structure of the mini-M conotoxin mr3a 总被引:2,自引:0,他引:2
Conotoxin mr3a from the venom of Conus marmoreus, a novel peptide that induces rolling seizures in mice, has the peptide sequence GCCGSFACRFGCVOCCV, where O is trans-4-hydroxyproline, and the chain is cross-linked with disulfide bonds between Cys-2 and Cys-16, Cys-3 and Cys-12, and Cys-8 and Cys-15. The tertiary structure of mr3a was determined by 2D 1H NMR in combination with a standard distance-geometry algorithm. The final set of 22 structures for the peptide had a mean global backbone RMS deviation of 0.53 +/- 0.22 A based on 51 NOE, 6 hydrogen bond, 6 phi dihedral angle, and 3 disulfide bond constraints. Conotoxin mr3a is the first example of the new mini-M branch of conopeptides in the M superfamily. Members of the maxi-M branch, whose structures are known, include the mu- and psi-conotoxins, both of which share a common disulfide bond connectivity. Although mr3a has the same arrangement of Cys residues as the mu- and psi-conotoxins, its disulfide connectivity is different. This gives mr3a a distinctive "triple-turn" backbone. 相似文献
26.
27.
The enzyme, prenyltransferase, which normally catalyzes the addition of an allylic pyrophosphate to isopentenyl pyrophosphate, has been found to catalyze the hydrolysis of its allylic substrate. The rate of this hydrolysis is markedly stimulated by inorganic pyrophosphate. Competition experiments with 2-fluoroisopentenyl pyrophosphate and inorganic pyrophosphate demonstrated that inorganic pyrophosphate stimulated hydrolysis by binding at the isopentenyl pyrophosphate site. Hydrolysis carried out in H218O or with (1S)-[1-3H]geranyl pyrophosphate show the C-O bond is broken and the C1 carbon of geranyl pyrophosphate is inverted in the process. These results are interpreted to favor a carbonium ion mechanism for the prenyltransferase reaction. 相似文献
28.
Isopentenyldiphosphate:dimethylallyldiphosphate isomerase (IPP isomerase) is an enzyme in isoprene metabolism which catalyzes the interconversion of the fundamental five-carbon homoallylic and allylic diphosphate building blocks for the pathway. The gene encoding IPP isomerase has recently been isolated from Saccharomyces cerevisiae [Anderson, M. S., Muehlbacher, M., Street, I.P., Proffitt, J., & Poulter, C. D. (1989) J. Biol. Chem. 264, 19169-19175]. A heterologous expression system was constructed for the gene and used to overexpress IPP isomerase in Escherichia coli. In transformants carrying the expression vector, IPP isomerase activity was increased by over 100,000-fold relative to that of the untransformed host strain. The overexpressed enzyme constitutes 30-35% of the total soluble cell protein and can be purified to homogeneity in two steps. Recombinant IPP isomerase was indistinguishable from that purified from yeast. 3-(Fluoromethyl)-3-butenyl diphosphate (FIPP) is a specific active-site-directed inhibitor of IPP isomerase from Claviceps purpurea [Muehlbacher, M., & Poulter, C. D. (1988) Biochemistry 27, 7315-7328]. Inactivation of yeast IPP isomerase by FIPP was active-site-directed, and inhibition resulted in formation of a stoichiometric enzyme-inhibitor complex. The site of covalent attachment in the enzyme-inhibitor complex was determined by inactivating IPP isomerase with [4-3H]FIPP, followed by digestion of the labeled enzyme with trypsin and purification of the resulting radioactive peptides by reversed-phase high-performance liquid chromatography. The primary site of attachment was Cys-139. 相似文献
29.
30.
15N-labeled Escherichia coli tRNAfMet, tRNAGlu, tRNATyr, and tRNAPhe. Double resonance and two-dimensional NMR of N1-labeled pseudouridine 总被引:8,自引:0,他引:8
R H Griffey D Davis Z Yamaizumi S Nishimura A Bax B Hawkins C D Poulter 《The Journal of biological chemistry》1985,260(17):9734-9741
The N1 imino units in Escherichia coli tRNAfMet, tRNAGlu, tRNAPhe, and tRNATyr were studied by 1H-15N NMR using three different techniques to suppress signals of protons not attached to 15N. Two of the procedures, Fourier internuclear difference spectroscopy and two-dimensional forbidden echo spectroscopy permitted 1H and 15N chemical shifts to be measured simultaneously at 1H sensitivity. The tRNAs were labeled by fermentation of the uracil auxotroph S phi 187 on a minimal medium containing [1-15N]uracil. 1H and 15N resonances were detected for all of the N1 psi imino units except psi 13 at the end of the dihydrouridine stem in tRNAGlu. Chemical shifts for imino units in the tRNAs were compared with "intrinsic" values in model systems. The comparisons show that the A X psi pairs at the base of the anticodon stem in E. coli tRNAPhe and tRNATyr have psi in an anti conformation. The N1 protons of psi in other locations, including psi 32 in the anticodon loop of tRNAPhe, form internal hydrogen bonds to bridging water molecules or 2'-hydroxyl groups in nearby ribose units. These interactions permit psi to stabilize the tertiary structure of a tRNA beyond what is provided by the U it replaces. 相似文献