首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   723篇
  免费   72篇
  国内免费   1篇
  796篇
  2023年   3篇
  2022年   3篇
  2021年   12篇
  2020年   4篇
  2019年   6篇
  2018年   7篇
  2017年   11篇
  2016年   12篇
  2015年   15篇
  2014年   33篇
  2013年   32篇
  2012年   51篇
  2011年   45篇
  2010年   29篇
  2009年   22篇
  2008年   32篇
  2007年   24篇
  2006年   37篇
  2005年   25篇
  2004年   24篇
  2003年   16篇
  2002年   21篇
  2001年   23篇
  2000年   22篇
  1999年   21篇
  1998年   22篇
  1997年   13篇
  1996年   10篇
  1995年   11篇
  1994年   10篇
  1993年   12篇
  1992年   19篇
  1991年   29篇
  1990年   11篇
  1989年   9篇
  1988年   13篇
  1987年   18篇
  1986年   9篇
  1985年   6篇
  1984年   7篇
  1983年   4篇
  1982年   4篇
  1981年   4篇
  1980年   8篇
  1979年   10篇
  1978年   5篇
  1977年   10篇
  1976年   4篇
  1975年   4篇
  1974年   3篇
排序方式: 共有796条查询结果,搜索用时 0 毫秒
71.
The past decade has provided exciting insights into a novel class of central (small) RNA molecules intimately involved in gene regulation. Only a small percentage of our DNA is translated into proteins by mRNA, yet 80% or more of the DNA is transcribed into RNA, and this RNA has been found to encompass various classes of novel regulatory RNAs, including, e.g., microRNAs. It is well known that DNA is constantly oxidized and repaired by complex genome maintenance mechanisms. Analogously, RNA also undergoes significant oxidation, and there are now convincing data suggesting that oxidation, and the consequent loss of integrity of RNA, is a mechanism for disease development. Oxidized RNA is found in a large variety of diseases, and interest has been especially devoted to degenerative brain diseases such as Alzheimer disease, in which up to 50-70% of specific mRNA molecules are reported oxidized, whereas other RNA molecules show virtually no oxidation. The iron-storage disease hemochromatosis exhibits the most prominent general increase in RNA oxidation ever observed. Oxidation of RNA primarily leads to strand breaks and to oxidative base modifications. Oxidized mRNA is recognized by the ribosomes, but the oxidation results in ribosomal stalling and dysfunction, followed by decreased levels of functional protein as well as the production of truncated proteins that do not undergo proper folding and may result in protein aggregation within the cell. Ribosomal dysfunction may also signal apoptosis by p53-independent pathways. There are very few reports on interventions that reduce RNA oxidation, one interesting observation being a reduction in RNA oxidation by ingestion of raw olive oil. High urinary excretion of 8-oxo-guanosine, a biomarker for RNA oxidation, is highly predictive of death in newly diagnosed type 2 diabetics; this demonstrates the clinical relevance of RNA oxidation. Taken collectively the available data suggest that RNA oxidation is a contributing factor in several diseases such as diabetes, hemochromatosis, heart failure, and β-cell destruction. The mechanism involves free iron and hydrogen peroxide from mitochondrial dysfunction that together lead to RNA oxidation that in turn gives rise to truncated proteins that may cause aggregation. Thus RNA oxidation may well be an important novel contributing mechanism for several diseases.  相似文献   
72.
The stability of serine proteases is of major importance for their application in industrial processes. Here we study the determinants of the stability of a Nocardiopsis prasina serine protease using fast residual activity assays, a feature classification algorithm, and structure-based energy calculation algorithms for 121 micropurified mutant enzyme clones containing multiple point mutations. Using a multivariate regression analysis, we deconvolute the data for the mutant clones and find that mutations of residues Asn47 and Pro124 are deleterious to the stability of the enzyme. Both of these residues are situated in loops that are known to be important for the stability of the highly homologous α-lytic protease. Structure-based energy calculations with PEATSA give a good general agreement with the trend of experimentally measured values but also identify a number of clones that the algorithm fails to predict correctly. We discuss the significance of the results in relation to the structure and function of closely related proteases, comment on the optimal experimental design when performing high-throughput experiments for characterizing the determinants of protein stability, and discuss the performance of structure-based energy calculations with complex data sets such as the one presented here.  相似文献   
73.
The vertebrate 2-5A system is part of the innate immune response and central to cellular antiviral activities. Upon activation by viral double-stranded RNA, 5′-triphosphorylated, 2′-5′-linked oligoadenylate polyribonucleotides (2-5As) are synthesized by one of several 2′-5′ oligoadenylate synthetases. The 2-5As bind and activate RNase L, an unspecific endoribonuclease, resulting in viral and cellular RNA decay. Given that most endogenous RNAs are degraded by RNase L, continued enzyme activity will eventually lead to cell growth arrest and cell death. This is averted, when 2-5As and their 5′-dephosphorylated forms, the so-called 2-5A core molecules, are cleaved and thus inactivated by 2′-5′-specific nuclease(s), e.g. phosphodiesterase 12, thereby turning RNase L into its latent form. In this study, we have characterized the human phosphodiesterase 12 in vitro focusing on its ability to degrade 2-5As and 2-5A core molecules. We have found that the enzyme activity is distributive and is influenced by temperature, pH and divalent cations. This allowed us to determine Vmax and Km kinetic parameters for the enzyme. We have also identified a novel 2′-5′-oligoadenylate nuclease; the human plasma membrane-bound ectonucleotide pyrophosphatase/phosphodiesterase 1, suggesting that 2-5A catabolism may be a multienzyme-regulated process.  相似文献   
74.
Ligand efficient fragments binding to PDK1 were identified by an NMR fragment-based screening approach. Computational modeling of the fragments bound to the active site led to the design and synthesis of a series of novel 6,7-disubstituted thienopyrimidin-4-one compounds, with low micromolar inhibitory activity against PDK1 in a biochemical enzyme assay.  相似文献   
75.
Diseases of the cornea are common and refer to conditions like infections, injuries and genetic defects. Morphologically, many corneal diseases affect only certain layers of the cornea and separate analysis of the individual layers is therefore of interest to explore the basic molecular mechanisms involved in corneal health and disease. In this study, the three main layers including, the epithelium, stroma and endothelium of healthy human corneas were isolated. Prior to analysis by LC-MS/MS the proteins from the different layers were either (i) separated by SDS-PAGE followed by in-gel trypsinization, (ii) in-solution digested without prior protein separation or, (iii) in-solution digested followed by cation exchange chromatography. A total of 3250 unique Swiss-Prot annotated proteins were identified in human corneas, 2737 in the epithelium, 1679 in the stroma, and 880 in the endothelial layer. Of these, 1787 proteins have not previously been identified in the human cornea by mass spectrometry. In total, 771 proteins were quantified, 157 based on in-solution digestion and 770 based on SDS-PAGE separation followed by in-gel digestion of excised gel pieces. Protein analysis showed that many of the identified proteins are plasma proteins involved in defense responses.  相似文献   
76.
77.
The metalloproteinase pregnancy-associated plasma protein-A (PAPP-A) cleaves both insulin-like growth factor (IGF)-binding protein 4 (IGFBP-4) and -5 at a single site in their central domain causing the release of bioactive IGF. Inhibition of IGF signaling is relevant in human disease, and several drugs in development target the IGF receptor. However, inhibition of PAPP-A activity may be a valuable alternative. We have generated monoclonal phage-derived single chain fragment variable (scFv) antibodies which selectively inhibit the cleavage of IGFBP-4 by PAPP-A, relevant under conditions where cleavage of IGFBP-4 represents the final step in the delivery of IGF to the IGF receptor. None of the antibodies inhibited the homologous proteinase PAPP-A2, which allowed mapping of antibody binding by means of chimeras between PAPP-A and PAPP-A2 to the C-terminal Lin12-Notch repeat module, separated from the proteolytic domain by almost 1000 amino acids. Hence, the antibodies define a substrate binding exosite that can be targeted for the selective inhibition of PAPP-A proteolytic activity against IGFBP-4. In addition, we show that the Lin12-Notch repeat module reversibly binds a calcium ion and that bound calcium is required for antibody binding, providing a strategy for the further development of selective inhibitory compounds. To our knowledge these data represent the first example of differential inhibition of cleavage of natural proteinase substrates by exosite targeting. Generally, exosite inhibitors are less likely to affect the activity of related proteolytic enzymes with similar active site environments. In the case of PAPP-A, selective inhibition of IGFBP-4 cleavage by interference with exosite binding is a further advantage, as the activity against other known or unknown PAPP-A substrates, whose cleavage may not depend on binding to the same exosite, is not targeted.  相似文献   
78.
Kochoyan A  Poulsen FM  Berezin V  Bock E  Kiselyov VV 《FEBS letters》2008,582(23-24):3374-3378
Fibroblast growth factor (FGF) receptor (FGFR) consists extracellularly of three immunoglobulin (Ig) modules (Ig1-3). Currently, there are two competing models (symmetric and asymmetric) of the FGF-FGFR-heparin complex based on crystal structures. Indirect evidence exists in support of both models. However, it is not clear which model is physiologically relevant. Our aim was to obtain direct, non-crystallographic evidence in support of them. We found by nuclear magnetic resonance that Ig2 could bind to FGF1 not only via the primary site (present in both models), but also via the secondary site (present only in the symmetric model). Thus, our data support the symmetric model.  相似文献   
79.
Objective To determine the impact of the European Union’s Clinical Trials Directive on the number of academic drug trials carried out in Denmark.Design Retrospective review of applications for drug trials to the Danish Medicines Agency, 1993-2006.Review methods Applications for drug trials for alternate years were classified as academic or commercial trials. A random subset of academic trials was reviewed for number of participants in and intended monitoring of the trials.Results Academic and commercial drug trials showed an identical steady decline from 1993 to 2006 and no noticeable change after 2004 when good clinical practice became mandatory for academic trials.Conclusion The Clinical Trials Directive introduced in May 2004 to ensure good clinical practice for academic drug trials was not associated with a decline in research activity in Denmark; presumably because good clinical practice units had already been in place in Danish universities since 1999. With such an infrastructure academic researchers can do drug trials under the same regulations as drug companies.  相似文献   
80.
The present study investigated the interaction between inflammatory reactions and benzene in vitro and in vivo with respect to oxidative DNA damage. In the in vitro models the oxidative burst of cells was induced by the pretreatment with phorbol myristate acetate (PMA) and in the in vivo models of inflammation mice were pretreated with lipopolysaccharide (LPS). The oxidative DNA damage was indicated by 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) and strand breaks as assessed by alkaline single cell gel electrophoresis (SCGE, Comet assay). The results showed that combination of PMA and benzene enhanced the level of 8-oxodG in DNA from mouse bone marrow cells by 197%, from human lymphocytes by 188% and from human neutrophils by 205% (p < .05). Pretreatment of mice with LPS and benzene resulted in an enhanced Comet score formation in bone marrow cells by 98% and in lymphocytes by 39% in Comet score (p < .05) and in an enhanced 8-oxodG level in bone marrow cells by 290%. The effects of the combined treatment with PMA/LPS and benzene exceeded the sum of the effects induced by PMA/LPS or benzene alone. The production of nitrate/nitrite showed a two fold increase in the supernatant from incubation of benzene and PMA-pretreated neutrophils. The increase in the 8-oxodG level in the human neutrophil incubation system demonstrated a correlation with nitrate/nitrite production, indicating a possible relationship with the generation of reactive nitrogen species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号