首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   475篇
  免费   39篇
  2023年   4篇
  2022年   4篇
  2021年   9篇
  2020年   11篇
  2019年   5篇
  2018年   10篇
  2017年   7篇
  2016年   16篇
  2015年   18篇
  2014年   23篇
  2013年   23篇
  2012年   30篇
  2011年   36篇
  2010年   25篇
  2009年   16篇
  2008年   29篇
  2007年   20篇
  2006年   19篇
  2005年   30篇
  2004年   27篇
  2003年   22篇
  2002年   14篇
  2001年   8篇
  2000年   20篇
  1999年   17篇
  1998年   8篇
  1997年   9篇
  1996年   8篇
  1995年   5篇
  1993年   3篇
  1992年   6篇
  1991年   6篇
  1990年   7篇
  1989年   6篇
  1988年   3篇
  1987年   2篇
  1985年   2篇
  1984年   1篇
  1982年   1篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1974年   1篇
排序方式: 共有514条查询结果,搜索用时 15 毫秒
481.
Aim  We searched for relationships between latitude and both the geographic range size and host specificity of fleas parasitic on small mammals. This provided a test for the hypothesis that specialization is lower, and thus niche breadth is wider, in high-latitude species than in their counterparts at lower latitudes.
Location  We used data on the host specificity and geographic range size of 120 Palaearctic flea species (Siphonaptera) parasitic on small mammals (Soricomorpha, Lagomorpha and Rodentia). Data on host specificity were taken from 33 regions, whereas data on geographic ranges covered the entire distribution of the 120 species.
Methods  Our analyses controlled for the potentially confounding effects of phylogenetic relationships among flea species by means of the independent-contrasts method. We used regressions and structural equation modelling to determine whether the latitudinal position of the geographic range of a flea covaried with either the size of its range or its host specificity. The latter was measured as the number of host species used, as well as by an index providing the average (and variance in) taxonomic distinctness among the host species used by a flea.
Results  Geographic range size was positively correlated with the position of the centre of the range; in other words, fleas with more northerly distributions had larger geographic ranges. Although the number of host species used by a flea did not vary with latitude, both the mean taxonomic distinctness among host species used and its variance increased significantly towards higher latitudes.
Main conclusions  The results indicate that niche breadth in fleas, measured in terms of both its spatial (geographic range size) and biological (host specificity) components, increases at higher latitudes. These findings are compatible with the predictions of recent hypotheses about latitudinal gradients.  相似文献   
482.
Many parasites are known to manipulate the behaviour of intermediate hosts in order to increase their probability of transmission to definitive hosts. This manipulation must have costs. Here we explore the combined effects of three such costs on the amount of effort a parasite should expend on host manipulation. Manipulation can have direct costs to future reproductive success due to energy expended to manipulate the host. There may also be indirect costs if other parasites infect the host and profit from the manipulation without paying the cost of manipulation. These “free riders” may impose a third cost by competing with manipulators for resources within the host. Using game theory analysis and several different competition models we show that intrahost competition will decrease the investment that a parasite should make in manipulation but that manipulation can, under some circumstances, be a profitable strategy even in the presence of non-manipulating competitors. The key determinants of the manipulator’s success and its investment in manipulation are the relatedness among parasites within the host, the ratio of the passive transmission rate to the efficiency of increasing transmission rate and the strength of competitive effects. Manipulation, when exploited by others, becomes an altruistic behaviour. Thus we suggest that our model may be generally applicable to cases where organisms can exploit the investment of others (possibly kin) while also competing with the organism whose investment they exploit.  相似文献   
483.
Animal populations at northern range limits may use habitat differently from those at range cores, requiring distinct conservation plans. Snakes are ectotherms that often have very specific requirements, but few studies have focused on the effect of northern latitudes on habitat selection by grassland snakes. We studied movement and habitat selection of 2 sympatric snake species at their northern range limits on the North American Great Plains: the eastern yellow-bellied racer (Coluber constrictor flaviventris, hereafter racer), a Threatened species in Canada, and the bullsnake (Pituophis catenifer sayi), which is listed as Data Deficient. Both of these species are potentially vulnerable to extinction in Canada because of habitat loss. Snakes from our study populations traveled up to 10-times farther from winter dens and occupied home ranges 3–104 times larger than populations further south. Both snake species moved from winter dens in the slopes of a major river valley to habitat in adjacent lowlands, including riparian zones (racers) and hilly areas with native grass species (bullsnakes). Multivariate modeling revealed that proximity to retreat sites was a significant predictor of snake site use for both species. Considering the need for winter dens and summering areas, our data suggest that snakes in northern latitudes should ideally have much larger protected areas compared to snakes near the core of their range. An alternative strategy is to conserve corridors linking wintering dens and summer habitats. Retreat sites such as burrows and shrubs are critical components of local habitat and should be included in conservation plans. © 2011 The Wildlife Society.  相似文献   
484.
Migrations, i.e. the recurring, roundtrip movement of animals between distant and distinct habitats, occur among diverse metazoan taxa. Although traditionally linked to avoidance of food shortages, predators or harsh abiotic conditions, there is increasing evidence that parasites may have played a role in the evolution of migration. On the one hand, selective pressures from parasites can favour migratory strategies that allow either avoidance of infections or recovery from them. On the other hand, infected animals incur physiological costs that may limit their migratory abilities, affecting their speed, the timing of their departure or arrival, and/or their condition upon reaching their destination. During migration, reduced immunocompetence as well as exposure to different external conditions and parasite infective stages can influence infection dynamics. Here, we first explore whether parasites represent extra costs for their hosts during migration. We then review how infection dynamics and infection risk are affected by host migration, thereby considering parasites as both causes and consequences of migration. We also evaluate the comparative evidence testing the hypothesis that migratory species harbour a richer parasite fauna than their closest free-living relatives, finding general support for the hypothesis. Then we consider the implications of host migratory behaviour for parasite ecology and evolution, which have received much less attention. Parasites of migratory hosts may achieve much greater spatial dispersal than those of non-migratory hosts, expanding their geographical range, and providing more opportunities for host-switching. Exploiting migratory hosts also exerts pressures on the parasite to adapt its phenology and life-cycle duration, including the timing of major developmental, reproduction and transmission events. Natural selection may even favour parasites that manipulate their host's migratory strategy in ways that can enhance parasite transmission. Finally, we propose a simple integrated framework based on eco-evolutionary feedbacks to consider the reciprocal selection pressures acting on migratory hosts and their parasites. Host migratory strategies and parasite traits evolve in tandem, each acting on the other along two-way causal paths and feedback loops. Their likely adjustments to predicted climate change will be understood best from this coevolutionary perspective.  相似文献   
485.
486.
The diversity of ways in which parasites manipulate the phenotype of their hosts to increase their transmission has been well‐documented during the past decades. Parasites clearly have the potential to alter a broad range of phenotypic traits in their hosts, extending from behaviour and colour to morphology and physiology. While the vast majority of studies have concentrated on few, often only one, host characters, there is increasing evidence that manipulative parasites alter multiple characteristics of their host's phenotype. These alterations can occur simultaneously and/or successively through time, making parasitically modified organisms undoubtedly more complex than traditionally viewed. Here, we briefly review the multidimensionality of host manipulation by parasites, discuss its possible significance and evolution, and propose directions for further research. This view should prove to be an extremely useful approach, generating a series of testable hypotheses regarding the ecology of parasitized hosts, and leading to a better comprehension of complex host–parasite relationships.  相似文献   
487.
Females are larger than males in most invertebrate taxa, a phenomenon believed to result from the pressures exerted on female body size by size-dependent fecundity. Male-male competition, which can act on male body size, is not thought to play as important a role in the evolution of sexual size dimorphism in invertebrates as it apparently does in some vertebrate groups. Here, using a comparative approach, the relationship between sexual size dimorphism and adult sex ratio is examined across 46 natural populations (41 species) and 30 experimental populations (21 species) of parasitic nematodes. If male-male competition via physical contests is important, relative male size should increase as the sex ratio becomes less female-biased. This is exactly what was found in the analyses, where residuals of male size regressed on female size were used as measures of sexual size dimorphism. This result was independent of any phylogenetic influences, and was obtained for both natural and experimental nematode populations. In addition, there was no evidence of any Allometric relationship between male and female body size. The average ratio of male size to female size was roughly constant across all species and independent of body size. The results are consistent with a role for male-male competition in explaining specific deviations from the average ratio of male to female body size, suggesting a significant role for sexual selection in the evolution of nematode body sizes.  相似文献   
488.
Despite the ubiquitous nature of parasitism, how parasitism alters the outcome of host–species interactions such as competition, mutualism and predation remains unknown. Using a phylogenetically informed meta-analysis of 154 studies, we examined how the mean and variance in the outcomes of species interactions differed between parasitized and non-parasitized hosts. Overall, parasitism did not significantly affect the mean or variance of host–species interaction outcomes, nor did the shared evolutionary histories of hosts and parasites have an effect. Instead, there was considerable variation in outcomes, ranging from strongly detrimental to strongly beneficial for infected hosts. Trophically-transmitted parasites increased the negative effects of predation, parasites increased and decreased the negative effects of interspecific competition for parasitized and non-parasitized heterospecifics, respectively, and parasites had particularly strong negative effects on host species interactions in freshwater and marine habitats, yet were beneficial in terrestrial environments. Our results illuminate the diverse ways in which parasites modify critical linkages in ecological networks, implying that whether the cumulative effects of parasitism are considered detrimental depends not only on the interactions between hosts and their parasites but also on the many other interactions that hosts experience.  相似文献   
489.
As information becomes available for many groups of organisms a general pattern of phylogenetic conservatism in ecological characters or morphological traits is now widely recognized. Conversely, conservatism of external ecological attributes throughout a lineage is still a contentious theme in ecology. Moreover, the studies exploring this topic have focused on free-living organisms, and have ignored parasites. The main external ecological attribute of parasite species is certainly their host specificity, which is a key determinant of both their range size and local abundance. We address the subject of conservatism and predictability of host specificity using 2 large databases concerning, respectively, ectoparasites and endoparasites. We found a significant positive relationship between the numbers of host species infested by flea sister species. Moreover, this result was consistent whether we used sympatric or allopatric flea species, suggesting no influence of the mode of speciation on this conservatism of specificity. Additionally, our results showed that congeneric helminth species have more similar host taxonomic diversities than expected by chance, although this conservatism is due mostly to trematodes. Whilst there is evidence of conservatism, the moderate levels preclude robust prediction of host specificity for one species based on that of closely related species.  相似文献   
490.
The aqueous extract ofRhododendron canadensis (L.) Torr. (Ericaceae) has strong biostatic properties, mainly observed on yeast and bacteria. The presence of hydroquinone in a concentration of 0.15% of the dry weight of the flowers is responsible for this action. This product is already known as a good bacteriocide, even against some pathogenic species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号