首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5092篇
  免费   494篇
  5586篇
  2022年   37篇
  2021年   62篇
  2020年   48篇
  2019年   55篇
  2018年   60篇
  2017年   83篇
  2016年   99篇
  2015年   162篇
  2014年   205篇
  2013年   225篇
  2012年   296篇
  2011年   285篇
  2010年   198篇
  2009年   189篇
  2008年   249篇
  2007年   224篇
  2006年   211篇
  2005年   228篇
  2004年   234篇
  2003年   228篇
  2002年   191篇
  2001年   186篇
  2000年   153篇
  1999年   153篇
  1998年   84篇
  1997年   85篇
  1996年   66篇
  1995年   50篇
  1994年   65篇
  1993年   49篇
  1992年   91篇
  1991年   80篇
  1990年   73篇
  1989年   74篇
  1988年   61篇
  1987年   45篇
  1986年   46篇
  1985年   69篇
  1984年   43篇
  1983年   38篇
  1982年   40篇
  1981年   30篇
  1980年   28篇
  1979年   46篇
  1978年   27篇
  1977年   28篇
  1976年   28篇
  1974年   30篇
  1973年   24篇
  1972年   23篇
排序方式: 共有5586条查询结果,搜索用时 0 毫秒
101.
Sequence-specific high mobility group (HMG) box factors bind and bend DNA via interactions in the minor groove. Three-dimensional NMR analyses have provided the structural basis for this interaction. The cognate HMG domain DNA motif is generally believed to span 6-8 bases. However, alignment of promoter elements controlled by the yeast genes ste11 and Rox1 has indicated strict conservation of a larger DNA motif. By site selection, we identify a highly specific 12-base pair motif for Ste11, AGAACAAAGAAA. Similarly, we show that Tcf1, MatMc, and Sox4 bind unique, highly specific DNA motifs of 12, 12, and 10 base pairs, respectively. Footprinting with a deletion mutant of Ste11 reveals a novel interaction between the 3' base pairs of the extended DNA motif and amino acids C-terminal to the HMG domain. The sequence-specific interaction of Ste11 with these 3' base pairs contributes significantly to binding and bending of the DNA motif.  相似文献   
102.
A systems-level approach for metabolic engineering of yeast cell factories   总被引:1,自引:0,他引:1  
The generation of novel yeast cell factories for production of high-value industrial biotechnological products relies on three metabolic engineering principles: design, construction, and analysis. In the last two decades, strong efforts have been put on developing faster and more efficient strategies and/or technologies for each one of these principles. For design and construction, three major strategies are described in this review: (1) rational metabolic engineering; (2) inverse metabolic engineering; and (3) evolutionary strategies. Independent of the selected strategy, the process of designing yeast strains involves five decision points: (1) choice of product, (2) choice of chassis, (3) identification of target genes, (4) regulating the expression level of target genes, and (5) network balancing of the target genes. At the construction level, several molecular biology tools have been developed through the concept of synthetic biology and applied for the generation of novel, engineered yeast strains. For comprehensive and quantitative analysis of constructed strains, systems biology tools are commonly used and using a multi-omics approach. Key information about the biological system can be revealed, for example, identification of genetic regulatory mechanisms and competitive pathways, thereby assisting the in silico design of metabolic engineering strategies for improving strain performance. Examples on how systems and synthetic biology brought yeast metabolic engineering closer to industrial biotechnology are described in this review, and these examples should demonstrate the potential of a systems-level approach for fast and efficient generation of yeast cell factories.  相似文献   
103.
Nifedipine, a calcium antagonist, has diuretic and natriuretic properties. However, the molecular mechanisms by which these effects are produced are poorly understood. We examined kidney abundance of aquaporins (AQP1, AQP2, and AQP3) and major sodium transporters [type 3 Na/H exchanger (NHE-3); type 2 Na-Pi cotransporter (NaPi-2); Na-K-ATPase; type 1 bumetanide-sensitive cotransporter (BSC-1); and thiazide-sensitive Na-Cl cotransporter (TSC)] as well as inner medullary abundance of AQP2, phosphorylated-AQP2 (p-AQP2), AQP3, and calcium-sensing receptor (CaR). Rats treated with nifedipine orally (700 mg/kg) for 19 days had a significant increase in urine output, whereas urinary osmolality and solute-free water reabsorption were markedly reduced. Consistent with this, immunoblotting revealed a significant decrease in the abundance of whole kidney AQP2 (47 +/- 7% of control rats, P < 0.05) and in inner medullary AQP2 (60 +/- 7%) as well as in p-AQP2 abundance (17 +/- 6%) in nifedipine-treated rats. In contrast, whole kidney AQP3 abundance was significantly increased (219 +/- 28%). Of potential importance in modulating AQP2 levels, the abundance of CaR in the inner medulla was significantly increased (295 +/- 25%) in nifedipine-treated rats. Nifedipine treatment was also associated with increased urinary sodium excretion. Consistent with this, semiquantitative immunoblotting revealed significant reductions in the abundance of proximal tubule Na(+) transporters: NHE-3 (3 +/- 1%), NaPi-2 (53 +/- 12%), and Na-K-ATPase (74 +/- 5%). In contrast, the abundance of the distal tubule Na-Cl cotransporter (TSC) was markedly increased (240 +/- 29%), whereas BSC-1 in the thick ascending limb was not altered. In conclusion, 1) increased urine output and reduced urinary concentration in nifedipine-treated-rats may, in part, be due to downregulation of AQP2 and p-AQP2 levels; 2) CaR might be involved in the regulation of water reabsorption in the inner medulla collecting duct; 3) reduced expression of proximal tubule Na(+) transporters (NHE-3, NaPi-2, and Na, K-ATPase) may be involved in the increased urinary sodium excretion; and 4) increase in TSC expression may occur as a compensatory mechanism.  相似文献   
104.
Delayed type hypersensitivity against antigens of Fasciola hepatica has been repeatedly documented in infected hosts. Evidence has been presented to suggest that the delayed reactivity may develop earlier in the regional lymph nodes of the parasitized organ than in other lymph nodes of the body (Soulsby 1971).  相似文献   
105.
106.
Colonies of Fusarium species often appear red due to production of pigments, such as aurofusarin or bikaverin. The primary compounds in these biosynthetic pathways are YWA1 and pre-bikaverin, respectively, catalyzed by two multidomain polyketide synthases (PKSs), which both have a claisen-type cyclase domain (CLC) in their N terminal. Disruption of the CLC domains has been shown to result in formation of the lactones citreoisocoumarin and SMA93 instead of YWA1 and pre-bikaverin. In the present study we have discovered a medium with low nitrogen content which partially redirects the aurofusarin and bikaverin pathways to produce citreoisocoumarin and SMA93, respectively. This is first time that SMA93 is identified in a fungus and we suggest that it is renamed bikisocoumarin, as it is derived from the bikaverin pathway. The redirection of the aurofusarin and bikaverin biosynthetic pathways was reverted by adding inorganic nitrogen to the medium, whereas organic nitrogen in form of arginine or glutamine stimulated isocoumarin production. This suggests that nitrogen source can influence isocoumarin production. Production of isocoumarin was also repressed by alkaline conditions, which suggests that nitrogen supply is not the sole regulatory factor in the pathway. The redirection was observed in all producers of aurofusarin (6) and bikaverin (2), suggesting the presence of a conserved regulatory mechanism.  相似文献   
107.
A. L. Archibald  C. S. Haley  J. F. Brown  S. Couperwhite  H. A. McQueen  D. Nicholson  W. Coppieters  A. Van de Weghe  A. Stratil  A. K. Winterø  M. Fredholm  N. J. Larsen  V. H. Nielsen  D. Milan  N. Woloszyn  A. Robic  M. Dalens  J. Riquet  J. Gellin  J. -C. Caritez  G. Burgaud  L. Ollivier  J. -P. Bidanel  M. Vaiman  C. Renard  H. Geldermann  R. Davoli  D. Ruyter  E. J. M. Verstege  M. A. M. Groenen  W. Davies  B. Høyheim  A. Keiserud  L. Andersson  H. Ellegren  M. Johansson  L. Marklund  J. R. Miller  D. V. Anderson Dear  E. Signer  A. J. Jeffreys  C. Moran  P. Le Tissier  Muladno  M. F. Rothschild  C. K. Tuggle  D. Vaske  J. Helm  H. -C. Liu  A. Rahman  T. -P. Yu  R. G. Larson  C. B. Schmitz 《Mammalian genome》1995,6(3):157-175
A linkage map of the porcine genome has been developed by segregation analysis of 239 genetic markers. Eighty-one of these markers correspond to known genes. Linkage groups have been assigned to all 18 autosomes plus the X Chromosome (Chr). As 69 of the markers on the linkage map have also been mapped physically (by others), there is significant integration of linkage and physical map data. Six informative markers failed to show linkage to these maps. As in other species, the genetic map of the heterogametic sex (male) was significantly shorter (16.5 Morgans) than the genetic map of the homogametic sex (female) (21.5 Morgans). The sex-averaged genetic map of the pig was estimated to be 18 Morgans in length. Mapping information for 61 Type I loci (genes) enhances the contribution of the pig gene map to comparative gene mapping. Because the linkage map incorporates both highly polymorphic Type II loci, predominantly microsatellites, and Type I loci, it will be useful both for large experiments to map quantitative trait loci and for the subsequent isolation of trait genes following a comparative and candidate gene approach.  相似文献   
108.
Campylobacter jejuni is the leading cause of human bacterial gastroenteritis worldwide, but source attribution of the organism is difficult. Previously, DNA microarrays were used to investigate isolate source, which suggested a non‐livestock source of infection. In this study we analysed the genome content of 162 clinical, livestock and water and wildlife (WW) associated isolates combined with the previous study. Isolates were grouped by genotypes into nine clusters (C1 to C9). Multilocus sequence typing (MLST) data demonstrated that livestock associated clonal complexes dominated clusters C1–C6. The majority of WW isolates were present in the C9 cluster. Analysis of previously reported genomic variable regions demonstrated that these regions were linked to specific clusters. Two novel variable regions were identified. A six gene multiplex PCR (mPCR) assay, designed to effectively differentiated strains into clusters, was validated with 30 isolates. A further five WW isolates were tested by mPCR and were assigned to the C7‐C9 group of clusters. The predictive mPCR test could be used to indicate if a clinical case has come from domesticated or WW sources. Our findings provide further evidence that WW C. jejuni subtypes show niche adaptation and may be important in causing human infection.  相似文献   
109.

Background

Climate change causes the breakdown of the symbiotic relationships between reef-building corals and their photosynthetic symbionts (genus Symbiodinium), with thermal anomalies in 2015–2016 triggering the most widespread mass coral bleaching on record and unprecedented mortality on the Great Barrier Reef. Targeted studies using specific coral stress indicators have highlighted the complexity of the physiological processes occurring during thermal stress, but have been unable to provide a clear mechanistic understanding of coral bleaching.

Results

Here, we present an extensive multi-trait-based study in which we compare the thermal stress responses of two phylogenetically distinct and widely distributed coral species, Acropora millepora and Stylophora pistillata, integrating 14 individual stress indicators over time across a simulated thermal anomaly. We found that key stress responses were conserved across both taxa, with the loss of symbionts and the activation of antioxidant mechanisms occurring well before collapse of the physiological parameters, including gross oxygen production and chlorophyll a. Our study also revealed species-specific traits, including differences in the timing of antioxidant regulation, as well as drastic differences in the production of the sulfur compound dimethylsulfoniopropionate during bleaching. Indeed, the concentration of this antioxidant increased two-fold in A. millepora after the corals started to bleach, while it decreased 70% in S. pistillata.

Conclusions

We identify a well-defined cascading response to thermal stress, demarking clear pathophysiological reactions conserved across the two species, which might be central to fully understanding the mechanisms triggering thermally induced coral bleaching. These results highlight that bleaching is a conserved mechanism, but specific adaptations linked to the coral’s antioxidant capacity drive differences in the sensitivity and thus tolerance of each coral species to thermal stress.
  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号